
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 5

Assignment 2 – text compression
due in class on Mon 23 Sep (40 points)

is assignment is an activity for groups of three. We’ll work on it in class on Wed
18 Sep, and then your group must submit one response before the deadline.

Introduction

In this activity, we will investigate the Huffman algorithm for text compression.
You’ve already seen one example of a Huffman encoding, represented by the
strange-looking tree on the handout labeled “variable-bit Huffman encoding.”

You will follow the Huffman algorithm and create a tree of your own, based on the
character frequencies of a message that I provide.

Phase 1: count letter frequency

Start with a stack of blank sticky notes and the message you were given. We’re go-
ing to consider each of the characters in your message, in order. Suppose the first
character is a G. We would write the G on a sticky note – roughly at the center left
– and also begin a tally in the lower left corner. Leave some space above and below
the character, as shown:

Move on to the next character in your message. Assuming it is a different character,
make a new sticky for that one.

When you encounter a character that you’ve seen before, do not create a new note,
but instead update the tally on the existing note containing that character. In this
example, we’ve just seen the character E for the third time:



2 of 5 Prof. League – Fall 2013 – Assignment 2 – text compression

Continue doing this for the entire length of your message. You will now have a count
of the frequencies of each character. Write the frequency in conventional (base ten)
notation in the upper left. Here’s a small sample:

In the next section, we will process these characters in order from lowest frequency
to highest. So you may want to take a moment now to arrange them in roughly that
order on your desktop.

Question 1: How many distinct characters did your message contain?

Question 2: If we were using a fixed-width encoding, howmany bits would you need
to represent just those characters?

Question 3: What is the most frequent character in your message, and how many
times did it appear?

Phase 2: merge tiles

e algorithm continues by repeatedly merging sticky notes, as described here. Start
by choosing two notes with the lowest frequencies. Probably you had several char-
acters with a frequency of one, so you can just choose two of them arbitrarily. Place
them side by side in your work area:



CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 5

In the section beneath the character and starting from the right, write a zero on the
left note and a one on the right note:

en, stick the right one onto the bottom of the left one. Cross out the frequencies
and replace the top one with their sum – in this case, 1+1 is 2:

Now you will treat this ‘merged’ note as if it were a single one, so place it somewhere
among other characters with frequency=2.

Continue merging together your lowest-frequency letters like this. It’s okay to pair
a frequency=1 with a frequency=2 if it’s the last frequency=1 remaining – then the
merged frequency would be 3.

Before long, you’ll have to merge notes that themselves are already merged. In the
example below, we paired the last frequency=1 character (K) with a group (MJ) that
has frequency=2:



4 of 5 Prof. League – Fall 2013 – Assignment 2 – text compression

As before, we write a zero on the left note. And we write ones on all of the right
notes… to the left of whatever code is already there:

Again, stick the right note onto the bottom of the left one. Cross out the frequencies
and replace the top one with their sum – in this case, 1+2 is 3.

Continuemerging notes using this technique until every character in yourmessage is
merged into one big note. en you will have a distinct binary encoding underneath



CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 5

each character. Probably you should take a photo of your encoding, and/or write
down the bits produced for each character elsewhere.

Question 4: How many bits are used to represent the most frequent character in
your message?

Question 5: What is the most number of bits used to encode any character in your
message?

Question 6: Use the character encodings you produced to encode the entiremessage
you were given. How many bits are used, in total?

Visualize encoding as a tree

As in the handout on variable-bit Huffman encoding, the character encodings you
produced should fit nicely into a binary tree. I’ll do a small example below. Our
algorithm has produced the encodings 00 for K, 010 for M, 011 for J, and 1 for E.

We interpret a 0 as choosing the left path in a binary tree, and 1 as the right path. So
to get to theK from the root we would go left, twice. For the E,we go right just once.
e M and J both have the prefix 01, so they sit at a “sub-tree” reached by going left
then right.

Task: Draw the entire tree corresponding to the character encoding you produced
using the Huffman algorithm.


	Introduction
	Phase 1: count letter frequency
	Phase 2: merge tiles
	Visualize encoding as a tree

