Practice midterm

23 October 2013

You have up to 1 hour, 45 minutes. You may use a calculator, but no text book or notes.

- 1. For each statement below, fill in the blank with the *best* term from the following list. Some terms might be used more than once; some might not be used at all.
 - \bullet algorithm \bullet array \bullet ASCII \bullet binary \bullet bit \bullet Boolean \bullet byte \bullet hexadecimal
 - ${\scriptstyle \bullet \ octal \ \bullet \ pixel \ \bullet \ pseudo-code \ \bullet \ Unicode}$
 - (a) _____ is the name of a numbering system in which each digit corresponds to exactly three bits.
 - (b) _____ is a notation for specifying algorithms. It is more natural for humans than a programming language.
 - (c) A(n) ______ is exactly 8 bits.
 - (d) _____ is an encoding of characters used in American English using 7 bits per character.
- 2. Write down the decimal (base 10) equivalents for the following 6-bit signed (two's complement) binary numbers. (That means the answers might be negative!)

1 1 0 0 1 0 =	1 1 1 1 0 1 =
1 1 0 1 1 0 =	0 1 0 0 0 1 =
0 0 0 1 0 1 =	1 1 1 1 1 1 =

3. Add the following pairs of 5-bit signed (two's complement) binary numbers. Your answers must be in binary, but you should check your work by converting to decimal. Remember, values can be negative!

+ 0 1 1 0 0 =	+ 0 0 1 0 0 =	+ 1 0 0 0 1 =
0 0 1 0 0 =	1 0 1 0 1 =	10110=

- 4. Suppose we want to design encodings just for the five letters A, H, M, N, and T.
 - (a) How many bits would we need to represent each letter in a **fixed-width** encoding? ______
 - (b) Using the fixed-width encoding in the previous question, how many bits would we need to represent the nine-letter word MANHATTAN? ______
 - (c) Draw a tree to represent a variable-width encoding of these five letters. Use your tree to encode the word MANHATTAN. How many bits did you need? ______ How many bits did you *save*, compared to the fixed-width encoding? ______

5. Create a truth table to show the value of $X' + (X \cdot Y)$ for all possible inputs of X and Y.

6. Which Boolean expression is equivalent to the following circuit diagram?

- (a) $A \oplus (B \cdot C)$
- (b) $A \cdot (B \oplus C)$
- (c) $A \cdot (B + C)$
- (d) $(A \cdot B) + C$
- (e) $A + (B \oplus C)$
- 7. Decode the following hexadecimal notation into an 8×8 icon, using 1 bit per pixel.

8. Briefly, what is the distinction between a **persistent** and a **volatile** storage device?

- 9. What is the output of the following algorithm? Remember to indicate clearly what is *output* and what is scratch work.
 - 1. Set N to 0
 - 2. Set K to 1
 - 3. If K > 4 then output N and stop.
 - 4. Set N to N + K
 - 5. Set K to K + 1
 - 6. Go back to step 3.