Practice final solutions

11 December 2013

You have up to 1 hour, 45 minutes. You may use a calculator, but no text book or notes.

- 1. For each statement below, fill in the blank with the *best* term from the following list. Some terms might be used more than once; some might not be used at all.
 - domain name foreign key frequency analysis HTML HTTP IP address
 minimax operating system password primary key public key table
 - (a) <u>HTML</u> is the main language in which the structure of a web page is specified.
 - (b) A(n) foreign key is an attribute in a database table whose value references a record in a different table.
 - (c) <u>frequency analysis</u> is a technique for trying to decrypt a message without requiring access to the shared secret. It's especially effective in a mono-alphabetic code.
 - (d) A(n) <u>IP address</u> is a numeric identifier for each machine on the Internet. The current version is 32 bits.
- 2. Which of the following schemes is the more secure authentication mechanism?
 - (a) A three-character password, using upper- and lower-case letters and digits.
 - (b) A four-character password, using just lower-case letters.

Explain why. Recall that we can quantify the security of a password using the number of *possible* passwords.

Password scheme (a) has 62 possibilities for each character (26 upper plus 26 lower plus 10 digits). There are three characters, so $62^3 = 238, 328$ possible passwords. Password scheme (b) has 26 possibilities for each character, and there are four characters so $26^4 = 456, 976$ possible passwords. That means that (b) is the more secure scheme, which may be counter-intuitive. (Of course, they're both pretty bad.)

3. Explain how presenting a photo ID in the physical world is an example of *two-factor authentication*.

The categories are:

- Something you know
- Something you have
- Biometric

So a photo ID is something you **have**, and the photo allows humans to authenticate based on your facial features (**biometric**).

4. The three tables below are a simplification of the database for a social networking web site, like Facebook. There is one main table, 'User', and two other tables that contain foreign keys to 'User'.

User:

ID*	Name	Birthday	Password hash
1	Alice Ann	1974/08/18	cf6a52053ff904bca9d96fd4e7740d7d
2	Bob Björk	1989/11/07	75e22f4965738386cbe02bca10d3120d
3	Carl Carlson	1993/05/03	61aa5b6c78fa4e3636069347ae39df10
4	Dee Doe	1989/12/21	98246ef16a87c12407e5fada044f591e
5	Edward Eng	1990/11/19	1ca30cd59f0b566f9ef3a8208679585e
6	Francine Fuentes	1992/03/25	e5dbb7657f770fad038220f5c69d806c

Friendship — indicates which users are friends with which other users:

	User 1	User 2	Status	Date	
	(ref. User)	(ref. User)			
	1	2	approved	2012/12/10	
	1	4	approved	2012/03/24	
	1	5	approved	2007/05/06	
	1	6	approved	2010/03/08	
	2	3	approved	2012/11/01	
	2	4	approved	2011/08/03	
	3	4	approved	2008/09/04	
	4	5	requested	2009/08/04	

Sender	Receiver	Date/time	Message
(ref. User)	(ref. User)		
1	2	2012/12/05 11:51	"Hey man!"
1	5	2012/12/05 16:40	"What r u doing tonite?"
2	1	2012/12/05 17:45	"Send me some tunez"
2	3	2012/12/05 21:18	"Love that pic, LOL"
4	2	2012/12/05 23:00	"This prof is trying my patience."
3	1	2012/12/06 00:05	"Ugh, tired"
2	4	2012/12/06 06:37	"You rock!"

Wall Messages — sent between users:

- (a) Which user is the youngest? <u>Carl Carlson</u>
- (b) Which user has the most friends? <u>Alice Ann has four friends.</u> (Dee Doe has three approved and one more requested.)
- (c) The oldest friendship in the database is between which two users? <u>Alice Ann</u> Edward Eng
- (d) Name all the friends of Dee Doe.Dee's approved friends include Alice, Bob, and Carl.
- (e) Are there any wall messages between users who are *not* friends? Which ones? Yes, there's a message from Carl to Alice and they are not friends.

5. Below is a table of jobs that we must schedule on a batch operating system. All jobs are available from the start.

Job	Arrival time	Run time
J1	0	8 seconds
J2	0	3 seconds
J3	0	4 seconds
J4	0	5 seconds

(a) Create a time-line to illustrate the First-Come First-Served (FCFS) strategy. It should include the start/stop times of each job.

J1 J2 J3 J4 +----+ 0 8 11 15 20

(b) Compute the average **turnaround** time of the four jobs using your FCFS timeline from the previous question.

```
Subtract arrival time from completion time.

J1: 8 - 0 = 8

J2: 11 - 0 = 11

J3: 15 - 0 = 15

J4: 20 - 0 = 20

Sum of these is 54, average is 54÷4 = 13.5
```

(c) Create a time-line to illustrate the Shortest Job Next (SJN) strategy. It should include the start/stop times of each job.

J2 J3 J4 J1 +----+ 0 3 7 12 20

(d) Compute the average **turnaround** time of the four jobs using your SJN time-line from the previous question.

```
J1: 20 - 0 = 20

J2: 3 - 0 = 3

J3: 7 - 0 = 7

J4: 12 - 0 = 12

Sum of these is 42, average is 42 \div 4 = 10.5
```

6. Below is a game tree in which player X is deciding which move to make: a, b, or c. The scores across the bottom are the relative value of that game state for player X. Use the *minimax* algorithm to propagate the scores and **determine the best move** for player X.

7. What is the output of the following Python program?

```
four = 4
six = four + 2
print "six is six"
six = six - 3
print six+1
four = four * four
print four+4
print "five * four"
six is six
4
20
five * four
```

8. This question is about planning by searching a state graph in AI. We will study the *8-puzzle,* in which the player slides eight tiles around on a 3×3 grid. The goal is to put the numbers in order, with the `hole' in the lower right.

Below is the start of a state space graph. The directions labeling the arrow transitions indicate that a numbered tile is moved *down* (or *up*, *left*, *right*) into the blank space. Complete the graph to show two more moves, and thus the path to the goal state: a solved puzzle.

9. In an attempt to conceal the character frequencies that are the downfall of a monoalphabetic substitution, the Vigenère technique (1553) switches the alphabet used on each letter, according to a secret keyword. We start with a table of shifted alphabets:

> a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z а b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b С d de fghijklmnopqrstuvwxyzabc e e f g h i j k l m n o p q r s t u v w x y z a b c d f f g h i j k l m n o p q r s t u v w x y z a b c d e ghijklmnopqrstuvwxyzabcdef g h h i j k l m n o p q r s t u v w x y z a b c d e f g i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k k l m n o p q r s t u v w x y z a b c d e f g h i j lmnopqrstuvwxyzabcdefghijk 1 mnopqrstuvwxyzabcdefghijkl m n opqrstuvwxyzabcdefghijklm n opqrstuvwxyzabcdefghijklmn 0 p q r s t u v w x y z a b c d e f g h i j k l m n o р qrstuvwxyzabcdefghijklmnop q r s t u v w x y z a b c d e f g h i j k l m n o p q r stuvwxyzabcdefghijklmnopqr S t u v w x y z a b c d e f g h i j k l m n o p q r s t uvwxyzabcdefghijklmnopqrst u vwxyzabcdefghijklmnopqrstu v wxyzabcdefghijklmnopqrstuv w x y z a b c d e f g h i j k l m n o p q r s t u v w х y z a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l m n o p q r s t u v w x y Z

Below is a secret message encoded with the keyword `blimp`. Work backwards to discover the message. The result should be two actual English words.

message:								
key:	b	1	i	m	р	b	1	i
encrypted:	h	1	u	q	d	w	р	Z

The message is "gameover"