
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 13

Multimedia encoding

Pixels and resolution

An digital image is broken up into tiny elements called pixels. (at word was actu-
ally coined as a contraction of “picture element.”) A pixel is perceived as a solid color,
and neighboring pixels can be different colors.

When we refer to the resolution of an image or a display device, we might be talking
about two different things:

• e number of pixels in the image. For example, a typical low-resolution computer
screen might by 1024×768. is is 786,432 pixels total, or about three-fourths of a
megapixel. An high-definition (HD) video image is 1920×1080, or about 2 megapix-
els. Digital cameras can produce 5 or 10 megapixels or so, which means the image is
larger than you can fit on most screens.

• Resolution can also refer to the density of the pixels in the display – usually re-
ferred to as pixels per inch (PPI) or dots per inch (DPI). Computer screens tend
to be around 100 ppi, but some are larger. e Apple Retina brand displays are in
the range 220–320 ppi. We can achieve much higher density using print on paper: a
high-end laser print might be 1200 dpi or even higher. Projection screens are likely
very low density, just because the same number of pixels are stretched over several
feet. I’d estimate that our projection screen in class is under 20 ppi (about 1024 pixels
spread across 5 feet).

Black and white

So how do we encode pixels as bits? e easiest case is when the image is completely
black and white. at is, each pixel is either on or off. en we can represent each
pixel as exactly one bit.

On paper or a whiteboard, it’s sensible to let 0=off=white (the default background
color) and 1=on=black (the color of your pen). So let’s draw an 8×8 pixel grid. We’ll
fill in some pixels and leave others blank. is particular grid displays an alien from
the early arcade game Space Invaders.

Since each pixel is exactly one bit, it’s trivial to represent this as a binary number.
e top row is 00011000, followed immediately by the next row 00111100 and so on.

2 of 13 Prof. League – Fall 2013 – Multimedia encoding

You’d have to know in advance that these bits represent an image that fits in an 8×8
grid. Otherwise, we could precede it by two bytes to specify the grid size.

Again, binary strings are long so it’s nice to be able to abbreviate it using hexadecimal.
is leads to a very natural encoding where you write 8,2,4,1 over each group of
4 pixels, and then convert the results. You can see the hexadecimal encoding to
the right of the image. In fact, Googling this hex string – 183C7EDBFF245AA5 –
currently leads you to one page: my blog post on this topic!

You should practice encoding and decoding icons like this. Here’s one example you
can decode from the hex.

My solution is available; it’s a character from an 8×8 bitmap font. To practice further,
decode these additional characters from that font:

• 3C66703C0E663C00

• 7E607C0606663C00

• C6CCD8F0D8CCC600

• 00663CFF3C660000

• 0066ACD8366ACC00

You can also encode characters in hexadecimal based on this font image (zoom in
with control-plus to see the 8×8 grids over each character).

You can also use the 1-bit per pixel encoding with color as long as each encoded
image is one solid color. For example, in older versions of the Pac-Man game, the
protagonist and each ghost are solid colors, even though the colors are all different.
ese shapes can still be encoded as 1 bit per pixel. (In class we’ll use my hexadec-
imal image workshop that adds color to the 1-bit per pixel encoding technique in a
different way.)

is is also an example of a 1-bit per pixel display:

https://www.google.com/#q=183C7EDBFF245AA5
icon-soln.png
tonc_font.png
heximage.html
heximage.html

CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 13

4 of 13 Prof. League – Fall 2013 – Multimedia encoding

Color images

How would we combine multiple colors into the same image? As a brief detour, let’s
explore what we mean by color.

What is color?

Color refers to the wavelength of light. We perceive short wavelengths as violet,
and long wavelengths as red. In between are the usual spectrum of colors: orange,
yellow, green, blue, etc. is range covers visible light, but there are also “colors”
(other wavelengths) we can’t perceive at all. Light with longer wavelengths than red
is infra-red, and with shorter wavelengths than violet is ultra-violet.

Figure 1: from How We See Color

Apart from thewavelength spectrum, the anatomyof our eyes leads to anotherway to
explain color. Your retina contains light-sensitive cells known as rods and cones. e
rods are largely color-blind, but are sensitive to small amounts of light so they help
with night vision. e cones come in three flavors, sensitive to different wavelengths.
e wavelengths that generate a response overlap, so the “in-between” colors are
perceived as combinations of multiple cones.

When you painted in elementary school, you may have learned about the three pri-
mary colors: red, yellow, and blue. Red and yellow make orange, yellow and blue
make green, etc.

With subtractive color, mixing paints results in dark and darker colors. Most com-
puter displays, however, are based on additive color. In this model, we mix red,
green, and blue lights to make different colors.

Subpixels

A pixel in most display technologies is actually a composition of three different
lamps. ey are so tightly packed that we usually cannot distinguish them inde-
pendently, so they activate our cones as if they were producing a single wavelength.
Below is a photo of two versions of the iPad display under a microscope (the iPad 3
on the left is Apple’s Retina display).

On some large displays, you can see these “subpixels” with the naked eye, if you

http://shutha.org/node/809
http://en.wikipedia.org/wiki/Subtractive_color
http://en.wikipedia.org/wiki/Additive_color

CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 13

Figure 2: from Color-Sensitive Cones

Figure 3: from Color eory – click through to see why it’s labeled ‘misleading’

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/colcon.html
http://www.gamonline.com/catalog/colortheory/language.php

6 of 13 Prof. League – Fall 2013 – Multimedia encoding

Figure 4: from Color eory again

http://www.gamonline.com/catalog/colortheory/language.php

CS101 – Fundamentals of Computer and Information Sciences – LIU 7 of 13

stand close enough. e following is a close-up of the display outside the Brook-
lyn Academy of Music on Flatbush Avenue. You can clearly see the pixels have six
lamps: two red in the center, and the green and blue on opposite corners.

I wrote a little program to render images in a simulation of the subpixel layout of
the BAM sign. If you right-click below and open Bart in a new tab, you can zoom
in (control-plus). You’ll see that what you perceive as yellow at a distance is actually
just red and green; the whites of Bart’s eyes are just red-green-blue.

https://github.com/league/subpixelize/blob/master/subpixelize.cpp

8 of 13 Prof. League – Fall 2013 – Multimedia encoding

Color encoding

Now, back to encoding color images as bits. Imagine using 3 bits per pixel. (We call
the number of bits used to represent the color of a single pixel the color depth of the
image.) We would map each bit to one of the Red-Green-Blue primary lamps. at
leads to these eight colors:

• 0 = 000 = black
• 1 = 001 = blue
• 2 = 010 = green
• 3 = 011 = cyan
• 4 = 100 = red
• 5 = 101 = magenta
• 6 = 110 = yellow
• 7 = 111 = white

Some systems extended this to 4-bit color, using the 4th bit to indicate extra bright-
ness of all the lamps at once. at produces 16 colors like the following. See also my
4-bit color demo.

Figure 5: from Wikipedia on the IBM Color Graphics Adapter (1981)

Now let’s expand to 6-bit color. Since it’s a multiple of 3, we can control the bright-
ness of each lamp independently: 2 bits for red, 2 bits for green, 2 bits for blue. We’ll
interpret the two bits as:

• 0 = 00 = off
• 1 = 01 = low
• 2 = 10 = medium
• 3 = 11 = high

http://en.wikipedia.org/wiki/Color_depth
http://contrapunctus.net/rgb-demo/4bit.html
http://en.wikipedia.org/wiki/Color_Graphics_Adapter

CS101 – Fundamentals of Computer and Information Sciences – LIU 9 of 13

en the color 110110 combines bright red, dark green, and medium blue. When
all three lamps are the same brightness, we get shades of gray. so 000000 is black,
010101 is dark gray, 101010 is light gray, and 111111 is white. In total, there are 2⁶ =
64 possible colors with 6 bits.

We can apply the technique to anymultiple of three: 9-bit color (512 possible colors),
12-bit color (4,096), and so on. Skipping these, our next stop will be 24-bit color. It’s
also known as true color, since it is believed to be more colors (16 million!) than any
human can perceive anyway. Using 8 bits (one byte) for each lamp, we get to dial the
brightness from 0–255. Expressing these 8 bits as two hexadecimal digits, that range
is 00–FF.

So true colors are six-digit hexadecimal numbers, like 6B1CC6. Let’s decompose that
into bits:

6 B 1 C C 6

0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0

<-----Red------> <----Green-----> <-----Blue----->

With this color, we have the red lamp at 6B₁₆ = 107₁₀ (out of 255, or 42%) brightness.
e green lamp is 1C = 28 out of 255, or 11% brightness. e blue lamp is C6 = 198
out of 255, or 78% brightness. Obviously, blue is the dominant color, with red next.
Here is a sample of 6B1CC6:

You can play with hex true colors by adjusting sliders in my 24-bit color demo, and
there’s a color quiz called What the Hex?

Image formats

e representations we’ve explored so far – simply writing the bits representing pixel
colors – is known informally as a bitmap. ere’s a BMP image format based on this,
but it contains additional bits to specify the color depth, image size, and some other
capabilities. e three formats we’ll concentrate on are PNG, JPEG, and GIF.

PNG (Portable Network Graphics) is a compressed image format that supports 24-
bit color. It’s a great choice for comics, drawings, logos, and icons.

JPEG (Joint Photographic Experts Group) is also compressed, but it’s designed espe-
cially for photographs. Unlike PNG, the compression in JPEG is lossy – it actually
throws away some of the information in the original image, so it can achieve a smaller
file size. In photographs the lossage is mostly not noticeable, although if you intend
to crop and edit your photos it’s best to compress only once, at the very end. Each
time you edit and save a JPEG, more information is lost.

GIF (Graphic Interchange Format) is a relatively old format, but it remains popular
in some applications mainly because it supports simple animation. e format can
contain a sequence of images that are then displayed in quick succession, and usually
looped. e pixel content is compressed using the lossless LZW algorithm.

http://contrapunctus.net/rgb-demo/index.html
http://yizzle.com/whatthehex/

10 of 13 Prof. League – Fall 2013 – Multimedia encoding

Figure 6: A (slightly exaggerated) look at using JPEG for line drawings, by Louis
Brandy

http://lbrandy.com/blog/2008/10/my-first-and-last-webcomic/
http://lbrandy.com/blog/2008/10/my-first-and-last-webcomic/

CS101 – Fundamentals of Computer and Information Sciences – LIU 11 of 13

ebigweakness of GIF is that each image can use atmost 256 colors. at’s because
the pixel data are encoded using 8 bits per pixel. A program that creates a GIF can
choose which 256 colors out of the full 16-million 24-bit colors to use, so that helps
a bit. But it remains a poor choice for photographs, which usually have subtle color
gradations across highlights and shadows.

Image steganography

Steganography is a way of sending a secret message to someone, where the message
is “hidden in plain sight.” If you don’t know to look for it, you never notice it’s there.

is section demonstrates an image steganography program that I wrote. It takes
a normal true-color image and manipulates the lowest two bits of each color byte,
storing a secondary 6-bit color image there. e changes this entails are so minor,
you never notice they are there. (is works only with lossless compression; if you
store the photo as a typical JPEG, its lossy compression will disrupt the hidden im-
age.) You can reveal the hidden image by clicking the left-shift key (<<) six times.

<button onclick="galleryChange('stegano1', +1)"> << </button>

Shift 0: sample pixel

<tt class="color">727F1F</tt>

 =

<tt class="binary">

01110010 01111111 00011111

</tt>

<button onclick="galleryChange('stegano1', -1)"> >> </button>

http://en.wikipedia.org/wiki/Steganography
https://github.com/league/stegano

12 of 13 Prof. League – Fall 2013 – Multimedia encoding

e image-within-image steganography technique works best with photographs,
where there are subtle gradations of color everywhere. If you start with a cartoon-
style image, with large solid blocks of unvarying color, it’s easier to see the hint of
the inner image. Here is an example. Depending on how good your monitor and
eyes are, you can make out some outlines of the 6-bit hidden image, before shifting
the pixel values.

<button onclick="galleryChange('stegano2', +1)"> << </button>

Shift 0: sample pixel

<tt class="color">E81C35</tt>

 =

<tt class="binary">

11101000 00011100 00110101

</tt>

<button onclick="galleryChange('stegano2', -1)"> >> </button>

It’s maybe even a little more visible when the inner image is a cartoon too.

<button onclick="galleryChange('stegano3', +1)"> << </button>

Shift 0: sample pixel

<tt class="color">EC213A</tt>

 =

<tt class="binary">

11101100 00100001 00111010

</tt>

<button onclick="galleryChange('stegano3', -1)"> >> </button>

Audio

• bit depth
• sample rate
• Nyquist rate
• PCM/WAV
• MP3, AAC, FLAC
• MIDI
• http://mudcu.be/piano/

Select an audio sample:

http://mudcu.be/piano/

CS101 – Fundamentals of Computer and Information Sciences – LIU 13 of 13

16-bit 44.1 kHz • 8-bit 44.1 kHz

16-bit 20 kHz • 8-bit 20 kHz

16-bit 10 kHz • 8-bit 10 kHz

16-bit 5 kHz • 8-bit 5 kHz

: nothing at of , which is

	Pixels and resolution
	Black and white
	Color images
	What is color?
	Subpixels
	Color encoding

	Image formats
	Image steganography
	Audio

