Boolean logic

In the 1840s, English mathematician George Boole developed an algebra (a set of operators and laws) for variables that can have just two states – **true** and **false**. Thus, a Boolean value is equivalent to one bit:

False = 0 = off True = 1 = on

The operators defined by Boole are pervasive throughout all of computing. You may have encountered them in doing library or other database searches. The ones we'll consider are:

The table illustrates both the algebraic notation and the **circuit diagram** notation. The elements of circuit diagrams are called **gates**, as in "AND gate" or "XOR gate."

The behavior of these operators can be defined by truth tables:

А	В	Α·Β	A+B	Α'	A⊕B
0	0	0	0	1	0
0	1	0	1	1	1
1	0	0	1	0	1
1	1	1	1	0	0

We combine the gates into **combinational circuits** to achieve various effects. For example, the algebraic expression $X = A \cdot B + A \cdot C$ corresponds precisely to the following circuit diagram:

and we can discover its effect by completing the truth table:

А	В	С	D=A∙B	E=A·C	X=D+E
0	0	0	0	0	0
0	0	1	0	0	0

Exercise: Try drawing the circuits and the truth tables for $X=(A \cdot B)'$ and for X=A'+B'. They should produce the same result for the inputs A and B. This is one of **DeMorgan's Laws.**