
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 16

Python language

Install Python 2.7

You can skip this section if you are using a lab computer with Python already in-
stalled. Otherwise, here are your choices:

• Download Python 2.7.x from the Python web site (not version 3.y.z!), as shown in
the rest of this section

• Use Python directly in your browser with PythonAnywhere – I have described how
to get it working in this short video.

• You may be able to use the Python app for the iPad – let me know how it works!

e rest of this section is about installing Python 2.7 on your computer.

To choose the right installer, you need to select between Mac and Windows, as well
as between 32 and 64-bit. If you’re not sure about the machine word size, from the
Windows start menu you can choose Control Panel » System and Security » System,
and look for the System type.

e install process is entirely straightforward, just work your way through the steps.
I’ll illustrate them below, but you probably won’t need it.

http://python.org/download/
https://www.pythonanywhere.com/
https://vimeo.com/78270120
https://itunes.apple.com/us/app/python-programming-language/id493505744


2 of 16 Prof. League – Fall 2013 – Python language



CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 16



4 of 16 Prof. League – Fall 2013 – Python language



CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 16



6 of 16 Prof. League – Fall 2013 – Python language



CS101 – Fundamentals of Computer and Information Sciences – LIU 7 of 16

Start your program

1. From the Windows Start menu, select Python 2.7 » IDLE (Python GUI). ere will
be a similarly named program in /Applications/Python 2.7 on the Mac.

2. A window called the “Python Shell” will appear. It displays a prompt like “>>>”. is
is the window in which you will interact with your program.

3. You need a second window, in which you will type and save the content of your pro-
gram. Select File » NewWindow from the menu.

4. While in the new window, select File » Save and give it a filename that ends with .py

(this will enable syntax coloring). You can also choose the folder to save it in, such
as your Documents or Desktop folder.

5. Type your code into the .py file, and save it with File » Save, or Ctrl-S or �-S.

6. Use Run » Run Module (F5) to run it, and interact with the program in the Shell
window.



8 of 16 Prof. League – Fall 2013 – Python language



CS101 – Fundamentals of Computer and Information Sciences – LIU 9 of 16

Printingmessages

Here is a program you can try that prints messages on the screen. You can copy and
paste this block into your .py file, then save and run. (Note: the coloring used on
this web page may not precisely match the colors you see in IDLE.)

print "Hello!"

print 3+4

print "3+4"

print "2*7 is", 2*7

When you run this program, the Shell window will contain:

>>> ====================== RESTART ======================

>>>

Hello!

7

3+4

2*7 is 14

>>>

edouble quotes indicate a string of characters (text). at portion is output exactly
as written. Any portion not in quotes is interpreted by Python. us the difference
between printing 3+4 (which produces 7) and printing "3+4".

Fixing errors

emost common error you will see is probably “Invalid syntax”. It pops up like this:

Dismiss that message, and you see it also highlights a portion of your program in red.

Often the red part is just after the source of the actual error. In this case, we omitted
the comma between the two different things in the print statement on that line.

Another kind of error shows up in the Shell window. It might look like this:



10 of 16 Prof. League – Fall 2013 – Python language

e actual error is the last line. is one is called a NameError. But the Traceback
section can help you too, by telling you which line number to examine (in this case,
line 4).

Doing calculations

We can store variables very simply in Python by using an equals sign. Variable names
consist of a sequence of letters, numbers, and underscores (no spaces), but they can-
not start with a number. Here are examples of valid variable names:

• quiz3

• the_last_day

• Frank

• x

ese are not valid:

• quiz 3 (contains a space)
• 2nd_quiz (starts with a number)

Variable names are case-sensitive, so x and X are both valid, but they are not the same
variable. Below is a program that uses variables to perform a computation.



CS101 – Fundamentals of Computer and Information Sciences – LIU 11 of 16

quiz1 = 32

quiz2 = 40

quiz3 = 16

average = (quiz1 + quiz2 + quiz3) / 3.0

print "Average is", average

When you run it, the output should look something like this:

>>> ====================== RESTART ======================

>>>

Average is 29.3333333333

Python (and most languages) distinguish between numbers that are integers (whole
numbers), and numbers that can contain decimal points. e latter are called
floating-point numbers. When you divide two integers, Python performs integer
division, which eliminates any remainder. You can overcome this by including a
decimal point in your numeral, even if it’s just 3.0 – that forces it to be represented
as floating-point.

>>> 9/2

4

>>> 3/4

0

>>> 9/2.0

4.5

>>> 3.0/4

0.75

Getting input

Python has a very handy built-in function for receiving input from the user of your
program. It works like this:

name = raw_input("Enter your name: ")

On the left side of the equal sign is a variable name. On the right side is the raw_input
function. In the parentheses, you specify a string that will be the prompt presented
to the user. When you run the above program, it looks like this:

>>> ====================== RESTART ======================

>>>

Enter your name:



12 of 16 Prof. League – Fall 2013 – Python language

You are expected to type something at this point, and press enter. Whatever string
you type will be placed into the variable name. Here’s a more complete sample pro-
gram:

name = raw_input("Enter your name: ")

print "Welcome to my program,", name

year = int(raw_input("What year were you born? "))

age = 2013 - year

print "You are", age, "years old."

Running the program looks like the following. e parts the user types are indicated
by «angle quotes».

>>> ====================== RESTART ======================

>>>

Enter your name: «Chris»

Welcome to my program, Chris

What year were you born? «1988»

You are 25 years old.

Boolean expressions

Python has values for Booleans – they are called True and False. Note that, like vari-
able names, they are case-sensitive, so you must capitalize them as shown. ere are
also operators that produce Boolean values. e most obvious ones are for numeric
comparisons. Consider this transcript in the Python shell:

>>> 3 < 5

True

>>> 3 > 5

False

>>> 2 < 2

False

>>> 2 <= 2

True

e last example in that block is <=, pronounced “less than or equal.”ere is also >=
for “greater than or equal.” You cannot have a space between the two operators: < =

will be a syntax error.

Checking whether two things are exactly the same is a little tricky. e equals sign =

is already used to mean variable assignment, as in:



CS101 – Fundamentals of Computer and Information Sciences – LIU 13 of 16

my_quiz_score = 38

is statement above does not ask whether my_quiz_score is equal to the value 38.
Instead, it sets the value of that variable to 38, and whatever value it had previously
is lost.

In order to ask the question, whether a variable is equal to a certain value, you need
to use a double equal sign: ==, like this:

>>> my_quiz_score == 38

True

>>> 38 == my_quiz_score

True

>>> 21 == my_quiz_score

False

>>> 19 == 19

True

>>> 19 == 21

False

>>> "nice" == "evil"

False

>>> "nice" == "nice"

True

Compound Booleans

Python also has operators from Boolean logic; they are called and, or, not. Here are
a few examples involving them:

>>> 3 > 5 or 5 < 6 # becomes False or True, which is True

True

>>> 3 > 5 and 5 < 6 # becomes False and True, which is False

False

>>> not True

False

>>> not (3 > 5)

True

>>> my_quiz_score >= 0 and my_quiz_score <= 40

True

at last example determines whether the value of my_quiz_score is within a certain
range: from zero to forty, inclusive.



14 of 16 Prof. League – Fall 2013 – Python language

Conditional statement

Now that we’ve seen Boolean expressions, we’re ready to explore conditional state-
ments. You remember these from working with pseudo-code; they were statements
like:

If X > 0 then output X and stop.

e syntax in Python is a bit more regimented. ere is a keyword if (must be lower
case), and then the Boolean expression, followed by a colon (:) – it’s a very common
mistake to forget the colon!

On the next line, and indented a few spaces, you put any statements that should be
executed only if the condition is true. Here is an example:

if my_quiz_score > 32:

print "Congratulations, that's a good score."

grade = "A"

print "Thanks for taking the course."

You can see that the last print statement in that block is not indented. at
means it is no longer controlled by the if. If we reach this code when the value of
my_quiz_score is 38, the output will be:

Congratulations, that's a good score.

Thanks for taking the course.

And the variable grade will contain the text string "A". On the other hand, if
my_quiz_score is 31, the output will be only the last line:

Thanks for taking the course.

It’s also possible to provide an else block that executes when the if block doesn’t.
Here’s a complete program you can paste into the Python program window and run
with F5:

When you run it, try entering different values at the prompt in the shell window, and
observe the results.



CS101 – Fundamentals of Computer and Information Sciences – LIU 15 of 16

If/else chain

It’s a fairly common pattern to “chain together” a series of if/else conditions, some-
thing like this:

if my_quiz_score > 32:

grade = "A"

else:

if my_quiz_score > 24:

grade = "B"

else:

if my_quiz_score > 16:

grade = "C"

else:

grade = "D"

You can see that the indentation increases each time an if is embedded within the
else of another if. Try tracing this code with my_quiz_score set to different values,
to see what ends up being stored in grade. You may even want to revise the previous
program using this technique, so it can output more than just A or B.

is chain is common enough that Python provides a shortcut for it so that the con-
tinued indentation doesn’t get out of hand. e shortcut relies on the keyword elif,
and it looks like this:

if my_quiz_score > 32:

grade = "A"

elif my_quiz_score > 24:

grade = "B"



16 of 16 Prof. League – Fall 2013 – Python language

elif my_quiz_score > 16:

grade = "C"

else:

grade = "D"

is program does the same thing as the previous one, but it’s a little cleaner and
shorter.

Exercises

ese are helpful exercises, to test putting it all together. First, create a program that
does the following:

Enter quiz 1 score: «90»

Enter quiz 2 score: «80»

Your average is 85.0

Your grade is B

It can just use 90/80/70/60 as the thresholds for A/B/C/D. Once you have that work-
ing, try this one:

Enter quiz 1 score: «60»

Enter quiz 2 score: «95»

Enter quiz 3 score: «92»

Dropping the 60

Your average is 93.5

Your grade is A

It will ask for three scores, but then drop the lowest one before computing the average
of the other two.

(My solution)

Reopening your programs

Once you have saved your .py file, it may not work just to double-click your file again
to reopen it. at will run the program in a console window, which is especially awk-
ward because it might not pause to show the output before the window disappears.

Instead, you can right-click in the .py file and select “Edit with IDLE” (if on Win-
dows). Or simply open IDLE first and then use the File » Open menu and navigate
to the .py file from there.

n7sol.html

	Install Python 2.7
	Start your program
	Printing messages
	Fixing errors
	Doing calculations
	Getting input
	Boolean expressions
	Compound Booleans
	Conditional statement
	If/else chain
	Exercises
	Reopening your programs

