
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 10

Number systems and binary

In the first unit of this course, we look at binary numbers and binary representations
of other sorts of data. See the video for a rationale, and a brief look at the founder of
Information Theory, Claude Shannon.

The Man Who Turned Paper Into Pixels from Delve on Vimeo.

Positional numbering system

Our normal number system is a positional system, where the position (column) of
a digit represents its value. Starting from the right, we have the ones column, tens
column, hundreds, thousands, and so on. Thus the number 3724 stands for three
THOUSAND, seven HUNDRED, two TENS (called twenty), and four ONES.

Figure 1: The columns in base ten

The values of those columns derive from the powers of ten, which is then called the
base of the number system. The base ten number system is also called decimal.

There is nothing special about base ten, except that it’s what you learned froma young
age. A positional numbering system can use any quantity as its base. Let’s take, for
example, base five. In base five, the columns represent the quantities (from right to
left) one, five, twenty-five, and a hundred twenty-five. We need to use five symbols to
indicate quantities from zero up to four. For simplicity, let’s keep the same numerals
we know: 0, 1, 2, 3, and 4.

The number shown in this figure, 3104 in base five, represents the same quantity that
we usually write as 404 in base ten. That’s because it is three × one hundred twenty-
five (= 375), plus one × twenty-five (= 25) plus four ones (= 4), so 375 + 25 + 4 =
404.

You can count directly in base five; it looks like this: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14,
20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 100. (Those correspond to
quantities from zero to twenty-five.)



2 of 10 Prof. League – Fall 2015 – Number systems and binary

Figure 2: The columns in base five

There is a relatively simple algorithm for converting from base ten to any foreign
base. Suppose we have the number 344 (three hundred forty-four) that we’d like to
write in base five.

We start by dividing the number by the desired base, so 344 ÷ 5 = 68.8. It helps to
think of that as 68 with a remainder of 4. (The .8 corresponds to a remainder of 4
because .8 × 5 = 4.) Remember the remainder, but proceed with the whole-number
part. So now we divide 68 ÷ 5 = 13.6 which is remainder 3. Next, 13 ÷ 5 = 2.6, again
remainder 3. Finally, 2 ÷ 5 = 0.4, which is remainder 2.

We stop when the whole-number part becomes zero, and then write the remainders
from right to left: 2334. Thus, 344 in base ten is written as ‘2334’ in base 5.

• Numberphile video: base twelve number system by James Grime [9:11].
• Numberphile video: linguistics and numbering systems by Tom Scott [9:54]

Binary numbers

Computer systems use binary numbers – that justmeans they are in base two. Using
two as the base is really convenient and flexible, because we need only two ‘symbols’
and there are somanyways we can represent them: zero/one, on/off, up/down, high-
/low, positive/negative, etc.

In binary, the columns are (from right to left) 1, 2, 4, 8, 16, 32, and so on. Using a
zero means we exclude that column’s quantity, and a one means we include it.

So the binary number 10110 is the quantity 16 + 4 + 2 = 22. Each binary digit (a one

https://www.youtube.com/watch?v=U6xJfP7-HCc
https://www.youtube.com/watch?v=l4bmZ1gRqCc


CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 10

Figure 3: @wirehead2501 on Twitter

Figure 4:

https://twitter.com/wirehead2501/status/517927971181432832


4 of 10 Prof. League – Fall 2015 – Number systems and binary

or a zero) is called a bit. The largest five-bit binary number, then is 11111 = 16 + 8 +
4 + 2 + 1 = 31.

It’s worthwhile to learn to count in binary, at least from zero to fifteen:

0000 = 0 0100 = 4 1000 = 8 1100 = 12

0001 = 1 0101 = 5 1001 = 9 1101 = 13

0010 = 2 0110 = 6 1010 = 10 1110 = 14

0011 = 3 0111 = 7 1011 = 11 1111 = 15

The repeated division algorithm we learned in the positional numbering section also
works for binary, but there’s an even simpler way it can be adapted, by thinking in
terms of even and odd numbers.

Let’s convert the number 46 to binary. We begin by noticing that it is even, so we
write a zero. Then we divide the number in half to get 23. That number is odd, so we
write a one. Then we divide it in half (discarding the .5 remainder) to get 11. That’s
odd, so we write a one, and so on.

46 even 0

23 odd 1

11 odd 1

5 odd 1

2 even 0

1 odd 1

The algorithm ends when we get down to 1, and then we read the binary number
from bottom to top: 101110 is the binary representation of the quantity 46.

Binary arithmetic

It’s relatively easy to add numbers directly in binary. Line up the columns and then
proceed from right to left, as usual. There are only four possible cases:

• If a column has no ones, write a zero below.
• If a column has one one, write a one below.
• If a column has two ones, write a zero and carry a one to the next column (to the

left).
• Finally, if a column has three ones (possible due to an incoming carry), write a one

and carry a one to the next column.

Below is an example of adding 10110 plus 11100. The result is 110010, and you can
see the carry bits above the original numbers, in orange.

When adding this way, it’s always a good idea to check your work by converting the
numbers to decimal and checking the addition. In this case, we’re adding 22 (10110)
to 28 (11100) to get 50 (110010).



CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 10

Figure 5:

Fixed-size binary numbers

We generally arrange numbers along a line, that goes off to infinity. Indeed, in binary
we can always continue counting by adding more and more columns that are powers
of two.

However, in most computer systems and programs we use fixed-size numbers. That
is, we decide in advance how many bits will be used to represent the number. For
example, a 32-bit computer represents most of its numbers and addresses using 32
bits. The largest such number is 2³²–1 = 4,294,967,295. Many computers now use 64
bits. The largest 64-bit number is 2⁶⁴–1 = 18,446,744,073,709,551,615.

When your numbers have a fixed size, then there is no number line heading off into
infinity. Instead, we arrange the numbers around a circle, like a clock. Below is the
number wheel for 3-bit integers. The smallest 3-bit integer is zero, and the largest
is seven. Then, if you attempt to keep counting, it just wraps around to zero again.

Figure 6:

When you perform arithmetic with fixed-size numbers, you throw away any extra



6 of 10 Prof. League – Fall 2015 – Number systems and binary

carry bit; the result cannot exceed the designated size. For example, see what hap-
pens if we try to add 110 + 011 using 3-bit integers:

Figure 7:

In 3-bit arithmetic, 6 plus 3 is 1. You can make sense of this on the number wheel.
Addition corresponds to walking clock-wise around the wheel. So start at 6, and go
clockwise by 3. That lands on 1, which is 6+3.

• Computerphile video: Professor Brailsford on binary addition and overflow [6:59]
• Numberphile video: James Clewett on fixed-size binary numbers in old video games

[5:23]

Signedmagnitude

Now we’ll look at signed numbers – that is, numbers that can be positive or nega-
tive. There are two techniques for encoding signed numbers. The first one is called
signedmagnitude. It appears simple at first, but that simplicity hides some awkward
properties.

Here’s how it works. We use a fixed width, and then the left-most bit represents the
sign. So 4-bit signed magnitude looks like this:

___ ___ ___ ___

sign 4 2 1

where having the sign bit set to ‘1’ means the magnitude is interpreted as negative.
Thus, 0110 is +6 whereas 1110 is -6. In this system, the largest positive number is
0111 = +7 and the most negative number is 1111 = -7.

One of the unfortunate effects of this representation is there are two ways to write
zero: 0000 and also 1000. There is no such thing as negative zero, so this doesn’t
really make sense.

Two’s complement

Thesecondway to represent signed quantities is called two’s complement. Although
this looks trickier at first, it actually works really well. Below is the interpretation of

https://www.youtube.com/watch?v=WN8i5cwjkSE
https://www.youtube.com/watch?v=umYvFdU54Po


CS101 – Fundamentals of Computer and Information Sciences – LIU 7 of 10

4-bit two’s complement. All we need to do compared to normal unsigned numbers
is negate the value of the left-most bit.

___ ___ ___ ___

-8 4 2 1

So +6 is 0110 as before, but what about -6? We need to turn on the negative 8, and
then add two: 1010. To represent -1, you turn on all the bits: 1111, because that
produces -8+4+2+1 = -8+7 = -1.

The nice thing about two’s complement is that you can add these numbers and ev-
erything just works out. Let’s try adding 7 and -3:

0 1 1 1 = 7

1 1 0 1 = -3

--------- ----

0 1 0 0 = 4

It’s also relatively easy to negate a number – that is, to go from +6 to -6 or from -3

to +3. Here are the steps:

1. First, flip all the bits. That is, all the zeroes become ones and all the ones become
zeroes.

2. Next, add one.

For example here is how we produce -6 from +6:

0 1 1 0 = +6

1 0 0 1 (flip all the bits)

+ 1 (add one)

---------

1 0 1 0 = -6

You don’t even have to reverse these steps in order to convert back:

1 0 1 0 = -6

0 1 0 1 (flip all the bits)

+ 1 (add one)

---------

0 1 1 0 = +6

Here’s a cartoon from XKCD about counting sheep using two’s complement!

http://xkcd.com/571/


8 of 10 Prof. League – Fall 2015 – Number systems and binary

Figure 8: How many bits is this person using?

Octal and hexadecimal

Finally, I want to introduce two number systems that are very useful as abbreviations
for binary. They work so well because their bases are powers of two.

Octal is base eight, so we use the symbols 0–7 and the values of the columns are:

___ ___ ___ ___

512 64 8 1

8³ 8² 8¹ 8�

The real advantage of octal, however, is that each octal digit maps to exactly three
binary digits. So, on octal number like 3714 maps as shown:

3 7 1 4 octal number

0 1 1 1 1 1 0 0 1 1 0 0 binary number

(4 2 1 4 2 1 4 2 1 4 2 1)

Hexadecimal is base sixteen, so we use the symbols 0–9 and then A to represent ten,
B for eleven, C for twelve, and so on up to F for fifteen. The values of the columns are:

____ ____ ____ ____

4096 256 16 1

16³ 16² 16¹ 16�

So a hexadecimal number like 2A5C has the value 2×4096 + 10×256 + 5×16 + 12×1

= 10844 in base ten.

In hexadecimal, each digit maps to exactly four bits. So here is that same number
in binary:



CS101 – Fundamentals of Computer and Information Sciences – LIU 9 of 10

2 A 5 C

0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0

(8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1)

Below are two great video overviews of hexadecimal. (Notewhen you watch these –
the Brits often pronounce zero as ‘naught’.)

• Numberphile video: James Clewett on Hexadecimal [7:57]
• Video: Peter Edwards on binary/hexadecimal conversion [3:10]

Practice problems

3. Convert the following base ten (decimal) numbers into binary.

a. 6
b. 18
c. 51
d. 63

4. Convert the following unsigned binary numbers into base ten.

a. 1010
b. 1101
c. 1000
d. 10001

5. What do all odd numbers have in common, when written in binary? (Hint: try writ-
ing the quantities 3, 5, 7, 9, 11 in binary.)

6. Using 7-bit signed (two’s complement) binary numbers, what is the largest positive
number? What is the most negative number?

7. Convert the following 5-bit signed (two’s complement) binary numbers into base
ten.

a. 01101
b. 01111
c. 10011
d. 11111

8. Convert the following 16-bit binary number into hexadecimal, and then into octal.

https://www.youtube.com/watch?v=9xbJ3enqLnA
https://www.youtube.com/watch?v=jFnXpMt6H_Y


10 of 10 Prof. League – Fall 2015 – Number systems and binary

0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0

9. Convert the following hexadecimal numbers into binary:

a. 9D
b. C4
c. A17E

10. Add and verify the following unsigned binary numbers.

1 0 1 1 1 1 1 1 0 1 1 1

+ 1 1 1 0 1 + 1 0 0 1 0 0

�������������� ��������������

Solutions here

Extra: floating-point

Figure 9: @jaffathecake on Twitter

• Computerphile video: Tom Scott on Floating Point [9:15]
• The Secret Robot Internet

q1-pr-sol.html
https://twitter.com/jaffathecake/status/438231637931745280/
https://www.youtube.com/watch?v=PZRI1IfStY0
http://www.smbc-comics.com/?id=2999

	Positional numbering system
	Binary numbers
	Binary arithmetic
	Fixed-size binary numbers
	Signed magnitude
	Two’s complement
	Octal and hexadecimal
	Practice problems
	Extra: floating-point

