
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 8

Figure 1: @pigworker on Twitter

Text encoding

We have covered how to represent numbers in binary; in this section we’ll explore
representations of text as bits. By ‘text’, wemean alphabets and other writing systems
—used everywhere from status updates and textmessages to email and digital books.

Beginnings

To start with, we can propose a way of mapping letters and other characters (punc-
tuation, space, etc.) to numbers. For example, let A be represented as the number
0, B as 1, C as 2, and so on. There are 26 letters in the English alphabet, so Z is 25,
and we’d need a total of 5 bits. (2⁵ is 32, so we’d even have a few numbers left over
for punctuation.)

Exercise: using the scheme outlined above, decode the word represented by the bits
00010 00000 10011

If our text messages need to distinguish between upper- and lower-case letters, we’ll
need more than 5 bits. Upper-case A–Z is 26 characters, lower-case a–z is another
26, so that’s a total of 52. 2⁶ is 64, so 6 bits would cover it and again have a few
available for punctuation.

But what about including numbers in our text? If we want to send the text message
“amazon has a 20% discount on textbooks,” we can’t really represent that ‘20’ as 10100
in binary, because that would conflict with the representation of the letter ‘U’.

Instead, we need to add space for the standard ten numerals as characters. Includ-
ing those with upper- and lower-case letters means we need at least 62 characters.
Technically that fits in 6 bits, but we’d have very little room for punctuation and the
character representing a space. So for practical purposes, we’re up to 7 bits per char-
acter. 2⁷ is 128, so now there is a good deal of room for other symbols.

As an aside, there could be a way to “reuse” alphabetic representations as numerals.
We’d just have to precede them with a marker that means “this is a number,” or else
require the recipient to guess from context. This is the situation in Braille, a writing

https://twitter.com/pigworker/status/344966015601500160
http://en.wikipedia.org/wiki/Braille


2 of 8 Prof. League – Fall 2017 – Text encoding

system for the visually impaired that’s based on 6-bit characters. (Each of six loca-
tions can be raised or not.) The Braille character for ‘A’ is the same as the number
‘1’.

Fixed vs. variable-width

Thesimple encodings I proposed in the previous section are based on afixed number
of bits per character — whether it is 5, 6, or 7. One way to illustrate that is as a tree
— see this file:

• 5-bit fixed encoding (PDF)

Trees are a commonly-used data structure in computer science, but they are a little
different than the organic trees to which they refer. First of all, we usually draw trees
with the root at the top, and they grow down the page. Each time a circle splits into
two paths, we call that a branch. The tree ends at the bottom with a row of leaves.

This particular tree is a binary tree, meaning that every node is either a leaf, or a
branch with exactly two children. The nice thing about a binary tree is that paths
from root to leaf correspond exactly to binary numbers. Just think of zero as going
left in the tree, and one as going right. Then, the number 01101 (for example) cor-
responds to left-right-right-left-right, which lands on the leaf marked N. Decode the
message in binary written beneath the tree.

You can tell the previous tree is fixed-width because every path from root to leaf is
exactly 5 transitions. Now compare that to a variable-bit tree, in this file:

• Variable-bit Huffman encoding (PDF)

In this case, different letters can have very different numbers of bits representing
them. For example, E is the shortest path, representing just 3 bits. X is a very long
path, representing 10 bits. Decode the word given in binary in the upper right of the
page.

On the handout, the word is printed with spaces between the letters, but actually
they’re not necessary. The bits 11100001001 can be decoded even though I haven’t
emphasized where one character ends and the next begins. You simply follow the
path in the tree until you land on a leaf. Then, start again at the top for the next bit.

This particular variable-width tree is crafted so that the overall effect is that it com-
presses English text. This works because more commonly used letters are repre-
sented with proportionally shorted bit strings. For example, let’s compare the en-
codings using both trees of a sequence of words:

word: fixed encoding: variable encoding:

THE 100110011100100 15 bits 11100001001 11 bits



CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 8

GRASS 001101000100000 11010000001100

1001010010 25 bits 01000100 22 bits

IS 0100010010 10 bits 01110100 8 bits

GREEN 001101000100100 1101000000001

0010001101 25 bits 0010110 20 bits

SAID 100100000001000 010011000111

00011 20 bits 11011 17 bits

QUUX 100001010010100 1111100001

10111 20 bits 111111111111

1111100010 32 bits

total: 115 bits 110 bits

With the fixed encoding, every character is exactly 5 bits, and so the whole sequence
of words is 115 bits. (We’re not counting encoding the spaces between words for this
exercise.)

Contrast that with the variable encoding. Nearly every word has a shorter represen-
tation. The one exception is “QUUX”, which of course isn’t really a word in English.
But it represents the case of a word with infrequently-used letters, and the encoding
of that one word increased substantially in size from 20 to 32 bits. On the whole,
the second tree still compresses as long as you are mostly using English words with
high-frequency letters.

• Letter frequency keyboard histogram
• 5 Hole Paper Tape (Computerphile video)

ASCII

This brings us to themost popular and influential of the fixed-width codes. It’s called
ASCII (pronounced “ass-key”), which stands for American Standard Code for Infor-
mation Interchange. It was developed in the early 1960s, and includes a 7-bit map-
ping of upper- and lower-case letters, numerals, a variety of symbols, and “control
characters.” You can see a table of all of them at http://www.asciitable.com/

The control characters are in the range 0–31 (base ten). They don’t have a visual
representation, but instead direct the display device in particular ways. Many of
them are now obsolete, but perhaps themost important one is 10₁₀ = A₁₆ = 0001010₂,
which is the “new line” character. Whenever you press enter to go to the next line,
this character is inserted in your document.

The character 32 is a space, and 33-63 hold mostly punctuation. The numerals are
at positions 48 through 57. These are easy to recognize in binary: they all start with
011 and then the lower four bits match the numeral. So you can tell at a glance that
0110101₂ = 35₁₆ is the numeral ‘5’.

https://twitter.com/mathemaniac/status/554205168149884928
https://www.youtube.com/watch?v=JafQYA7vV6s
http://www.asciitable.com/


4 of 8 Prof. League – Fall 2017 – Text encoding

The range 64–95 is mostly uppercase characters, and 96–127 is mostly lowercase.
(Both ranges include a few more punctuation characters and brackets.) These num-
bers correspond to bit strings starting with 10 for uppercase and 11 for lowercase.
The remaining 5 bits give the position of the letter in the alphabet. So 10 01011₂ =
4B₁₆ is the eleventh letter (uppercase ‘K’) and 11 01011₂ = 6B₁₆ is the corresponding
lowercase ‘k’.

Further experimentation:

• Hidden text (steganography) using ASCII spacing characters.

Babel

ASCII worked relatively well for the English-speaking world, but other nations and
cultures have needs for different symbols, accents, alphabets, and other characters.
It’s impossible to write niño or café in ASCII, or the Polish name Michał, and it’s
hopeless for the Greek word �λήθεια, or the Chinese �.

Computer architectures eventually settled on eight bits as the smallest addressable
chunk of memory, known as a byte. Since ASCII was 7 bits, it became possible to
use that eighth bit to indicate an extra 128 characters.

This led to awide variety of incompatible 8-bit encodings for various languages. They
mostly agreed in being compatible with ASCII for the first 128 characters, but be-
yond that it was chaos. It’s all described in the different parts of this specification:

• ISO 8859 specification

That is, ISO 8859-1 was for Western European languages, 8859-2 for Central Euro-
pean, 8859-4 forNorth European, 8859-5 for Cyrillic alphabet, 8859-7 for Greek, etc.
Sending documents between these language groups was difficult, and it was impos-
sible to create a single document containing multiple languages from incompatible
encodings.

As one small example, let’s take the character at position EC₁₆ = 236₁₀. All these
encodings disagree about what it should be:

• ISO 8859-1: ì — LATIN SMALL LETTER I WITH GRAVE
• ISO 8859-2: ě — LATIN SMALL LETTER E WITH CARON
• ISO 8859-4: ė — LATIN SMALL LETTER E WITH DOT ABOVE
• ISO 8859-5: ь — CYRILLIC SMALL LETTER SOFT SIGN
• ISO 8859-7: μ — GREEK SMALL LETTER MU
• Mac OS Roman: Ï — LATIN CAPITAL LETTER I WITH DIAERESIS
• IBM PC: ∞ — INFINITY

You can still see the remnants of this old incompatible encoding system in your
browser’s menu. Most web pages today will be in Unicode — we’ll get to that in a

http://www.spammimic.com/encodespace.shtml
http://en.wikipedia.org/wiki/ISO/IEC_8859
http://en.wikipedia.org/wiki/ISO/IEC_8859-1
http://en.wikipedia.org/wiki/ISO/IEC_8859-2
http://en.wikipedia.org/wiki/ISO/IEC_8859-4
http://en.wikipedia.org/wiki/ISO/IEC_8859-5
http://en.wikipedia.org/wiki/ISO/IEC_8859-7
http://en.wikipedia.org/wiki/Mac_OS_Roman
http://en.wikipedia.org/wiki/Code_page_437


CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 8

Figure 2:

moment — but the browser still supports these mostly-obsolete encodings, so it can
show you web pages written using them. Notice that even for the same language,
there are often several choices of encodings available.

Unicode

To deal with this problem of incompatible encodings across different language
groups, the Unicode Consortium was founded with the amazing and noble goal of
developing one encoding that would contain every character and symbol used in
every language on the planet.

You can get a sense of the variety and scope of this goal by browsing the code charts



6 of 8 Prof. League – Fall 2017 – Text encoding

Figure 3:

on the Unicode web site:

• Code charts

Each one is a PDFfile that pertains to a particular region, language, or symbol system.
In total, it’s close to a hundred thousand characters.

The code charts give a distinct number to every possible character, but there is still
the issue of how to encode those numbers as bits. Most of the numbers fit in 16 bits,
which is why they are expressed as four hexadecimal digits in the code charts (such
as 1F30 for an accentedGreek iota: �). But 2¹⁶ is 65,536 andwe said there were closer
to 100,000 characters, so obviously 16 bits is not enough. Most of the time Unicode
is represented as a multi-byte (variable) encoding called UTF-8. The original ASCII
characters are still represented as just one byte, but setting the eighth bit enables a
clever mechanism that indicates how many bytes follow. Here is a nice explanation
of Unicode and UTF-8 by Tom Scott on Computerphile:

Nowadays, Unicode works just about everywhere, and almost all new content uses it.
There is still an occasional problem of whether or not your computer has the correct
fonts installed that contain all the characters you need. Sometimes you will see a
box show up in place of an unsupported character. Here is the same text displayed
on three different systems:

The one above shows every character perfectly. The one below is missing a few char-
acters.

Finally, the system below is unable to display any characters except those in ASCII.

http://www.unicode.org/charts/


CS101 – Fundamentals of Computer and Information Sciences – LIU 7 of 8

Figure 4:

Figure 5:



8 of 8 Prof. League – Fall 2017 – Text encoding

Figure 6: @rob_pike on Twitter

https://twitter.com/rob_pike/status/536754241939853312/photo/1

	Beginnings
	Fixed vs. variable-width
	ASCII
	Babel
	Unicode

