
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 15

Figure 1:

Figure 2:

Python language

Install Python

You can skip this section if you are using a lab computer with Python already in-
stalled. Otherwise, download Python 3.x.y from the Python web site. The install
process is entirely straightforward, just work your way through the steps.

Start your program

1. From the Windows Start menu, select All Programs » Python 3.x » IDLE (Python
GUI).There will be a similarly named program inApplications » Python 3.x on the
Mac.

2. A window called the “Python Shell” will appear. It displays a prompt like “>>>”. This
is the window in which you will interact with your program.

3. You need a second window, in which you will type and save the content of your pro-
gram. Select File » New File from the menu.

http://python.org/download/

2 of 15 Prof. League – Fall 2017 – Python language

Figure 3:

CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 15

Figure 4:

4. While in the new window, select File » Save and give it a filename that ends with .py

(this will enable syntax coloring). You can also choose the folder to save it in, such
as your Documents or Desktop folder.

5. Type your code into the .py file, and save it with File » Save, or Ctrl-S or �-S.

6. Use Run » Run Module (F5) to run it, and interact with the program in the Shell
window.

Printingmessages

Here is a program you can try that prints messages on the screen. You can copy and
paste this block into your .py file, then save and run. (Note: the coloring used on
this web page may not precisely match the colors you see in IDLE.)

print("Hello!")

print(3+4)

print("3+4")

print("2*7 is", 2*7)

When you run this program, the Shell window will contain:

4 of 15 Prof. League – Fall 2017 – Python language

Figure 5:

Figure 6:

>>> ====================== RESTART ======================

>>>

Hello!

7

3+4

2*7 is 14

>>>

Thedouble quotes indicate a string of characters (text). That portion is output exactly
as written. Any portion not in quotes is interpreted by Python. Thus the difference
between printing 3+4 (which produces 7) and printing "3+4".

Fixing errors

Themost common error you will see is probably “Invalid syntax”. It pops up like this:

Dismiss that message, and you see it also highlights a portion of your program in red.

Often the red part is just after the source of the actual error. In this case, we omitted

CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 15

Figure 7:

the comma between the two different things in the print statement on that line.

Another kind of error shows up in the Shell window. It might look like this:

The actual error is the last line. This one is called a NameError. But the Traceback
section can help you too, by telling you which line number to examine (in this case,
line 4).

Doing calculations

We can store variables very simply in Python by using an equals sign. Variable names
consist of a sequence of letters, numbers, and underscores (no spaces), but they can-
not start with a number. Here are examples of valid variable names:

• quiz3

• the_last_day

• Frank

• x

These are not valid:

• quiz 3 (contains a space)
• 2nd_quiz (starts with a number)

Variable names are case-sensitive, so x and X are both valid, but they are not the same
variable. Below is a program that uses variables to perform a computation.

quiz1 = 32

quiz2 = 40

quiz3 = 16

average = (quiz1 + quiz2 + quiz3) / 3.0

print("Average is", average)

6 of 15 Prof. League – Fall 2017 – Python language

When you run it, the output should look something like this:

>>> ====================== RESTART ======================

>>>

Average is 29.333333333333332

Python (and most languages) distinguish between numbers that are integers (whole
numbers), and numbers that can contain decimal points. The latter are called
floating-point numbers. When you divide two integers, Python 3 automatically
converts them to floating-point – not every language does this. If you want integer
division, use a double-slash (//) as the divide operator.

>>> 9/2

4.5

>>> 3/4

0.75

>>> 9//2

4

>>> 3//4

0

Comments

It is often useful to add notes to your program, for yourself or other humans. Any
text on a line that follows a pound sign (#) will be ignored by Python. So we can use
this facility to add a header describing the program:

quizzes.py -- This program calculates quiz scores

by Christopher League

print("Welcome to the quiz calculator!")

Or to explain a particular piece of code on the same line:

average = (quiz1 + quiz2 + quiz3) / 3.0 # Add first, then divide

It can even be used to disable a line of code without deleting it from your program…
then it’s easy to put back if you need to. This is called “commenting out” code.

total = quiz1 + quiz2 + quiz3

#print(total)

average = total / 3.0

print(average)

CS101 – Fundamentals of Computer and Information Sciences – LIU 7 of 15

Getting input

Python has a very handy built-in function for receiving input from the user of your
program. It works like this:

name = input("Enter your name: ")

On the left side of the equal sign is a variable name. On the right side is the input
function. In the parentheses, you specify a string that will be the prompt presented
to the user. When you run the above program, it looks like this:

>>> ====================== RESTART ======================

>>>

Enter your name:

You are expected to type something at this point, and press enter. Whatever string
you type will be placed into the variable name. Here’s a more complete sample pro-
gram:

name = input("Enter your name: ")

print("Welcome to my program,", name)

year = int(input("What year were you born? "))

age = 2014 - year

print("You are", age, "years old.")

Running the program looks like the following. The parts the user types are indicated
by «angle quotes».

>>> ====================== RESTART ======================

>>>

Enter your name: «Chris»

Welcome to my program, Chris

What year were you born? «1988»

You are 26 years old.

Boolean expressions

Python has values for Booleans – they are called True and False. Note that, like vari-
able names, they are case-sensitive, so you must capitalize them as shown. There are
also operators that produce Boolean values. The most obvious ones are for numeric
comparisons. Consider this transcript in the Python shell:

8 of 15 Prof. League – Fall 2017 – Python language

>>> 3 < 5

True

>>> 3 > 5

False

>>> 2 < 2

False

>>> 2 <= 2

True

The last example in that block is <=, pronounced “less than or equal.” There is also
>= for “greater than or equal.” You cannot have a space between the two operators: <
= will be a syntax error.

Checking whether two things are exactly the same is a little tricky. The equals sign =

is already used to mean variable assignment, as in:

my_quiz_score = 38

This statement above does not ask whether my_quiz_score is equal to the value 38.
Instead, it sets the value of that variable to 38, and whatever value it had previously
is lost.

In order to ask the question, whether a variable is equal to a certain value, you need
to use a double equal sign: ==, like this:

>>> my_quiz_score == 38

True

>>> 38 == my_quiz_score

True

>>> 21 == my_quiz_score

False

>>> 19 == 19

True

>>> 19 == 21

False

>>> "nice" == "evil"

False

>>> "nice" == "nice"

True

The opposite of the equality operator is !=, and it is simply pronounced “not equals.”

>>> my_quiz_score != 38

False

>>> 38 != my_quiz_score

CS101 – Fundamentals of Computer and Information Sciences – LIU 9 of 15

False

>>> 21 != my_quiz_score

True

>>> 19 != 19

False

>>> 19 != 21

True

>>> "nice" != "evil"

True

>>> "nice" != "nice"

False

Compound Booleans

Python also has operators from Boolean logic; they are called and, or, not. Here are
a few examples involving them:

>>> 3 > 5 or 5 < 6 # becomes False or True, which is True

True

>>> 3 > 5 and 5 < 6 # becomes False and True, which is False

False

>>> not True

False

>>> not (3 > 5)

True

>>> my_quiz_score >= 0 and my_quiz_score <= 40

True

That last example determines whether the value of my_quiz_score is within a certain
range: from zero to forty, inclusive.

Conditional statement

Now that we’ve seen Boolean expressions, we’re ready to explore conditional state-
ments. They have a keyword if (must be lower case), and then the Boolean expres-
sion, followed by a colon (:) – it’s a very common mistake to forget the colon!

On the next line, and indented a few spaces, you put any statements that should be
executed only if the condition is true. Here is an example:

if my_quiz_score > 32:

print("Congratulations, that's a good score.")

grade = "A"

print("Thanks for taking the course.")

10 of 15 Prof. League – Fall 2017 – Python language

You can see that the last print statement in that block is not indented. That
means it is no longer controlled by the if. If we reach this code when the value of
my_quiz_score is 38, the output will be:

Congratulations, that's a good score.

Thanks for taking the course.

And the variable grade will contain the text string "A". On the other hand, if
my_quiz_score is 31, the output will be only the last line:

Thanks for taking the course.

It’s also possible to provide an else block that executes when the if block doesn’t.
Here’s a complete program you can paste into the Python program window and run
with F5:

my_quiz_score = int(input("Enter your quiz score: "))

if my_quiz_score > 32:

print("Congratulations, that's a good score.")

grade = "A"

else:
print("I'm sure you can do better next time.")

grade = "B"

print("You earned a", grade)

When you run it, try entering different values at the prompt in the shell window, and
observe the results.

If/else chain

It’s a fairly common pattern to “chain together” a series of if/else conditions, some-
thing like this:

if my_quiz_score > 32:

grade = "A"

else:
if my_quiz_score > 24:

grade = "B"

else:
if my_quiz_score > 16:

grade = "C"

else:
grade = "D"

CS101 – Fundamentals of Computer and Information Sciences – LIU 11 of 15

Figure 8:

You can see that the indentation increases each time an if is embedded within the
else of another if. Try tracing this code with my_quiz_score set to different values,
to see what ends up being stored in grade. You may even want to revise the previous
program using this technique, so it can output more than just A or B.

This chain is common enough that Python provides a shortcut for it so that the con-
tinued indentation doesn’t get out of hand. The shortcut relies on the keyword elif,
and it looks like this:

if my_quiz_score > 32:

grade = "A"

elif my_quiz_score > 24:

grade = "B"

elif my_quiz_score > 16:

grade = "C"

else:
grade = "D"

This program does the same thing as the previous one, but it’s a little cleaner and
shorter.

Exercises

These are helpful exercises, to test putting it all together. First, create a program that
does the following:

12 of 15 Prof. League – Fall 2017 – Python language

Enter quiz 1 score: «90»

Enter quiz 2 score: «80»

Your average is 85.0

Your grade is B

It can just use 90/80/70/60 as the thresholds for A/B/C/D. Once you have that work-
ing, try this one:

Enter quiz 1 score: «60»

Enter quiz 2 score: «95»

Enter quiz 3 score: «92»

Dropping the 60

Your average is 93.5

Your grade is A

It will ask for three scores, but then drop the lowest one before computing the average
of the other two.

Reopening your programs

Once you have saved your .py file, it may not work just to double-click your file again
to reopen it. That will run the program in a console window, which is especially awk-
ward because it might not pause to show the output before the window disappears.

Instead, you can right-click in the .py file and select “Edit with IDLE” (if on Win-
dows). Or simply open IDLE first and then use the File » Open menu and navigate
to the .py file from there.

Other sample programs

Calculate wage and taxes

wage = float(input('Enter your wage: '))

hours = int(input('How many hours: '))

pay = wage * hours

if pay > 10000:

print("You owe 10% in taxes.")

pay = pay * 0.9

print("Your pay is $", pay)

A loop to count down

n = 10

while n > 0:

CS101 – Fundamentals of Computer and Information Sciences – LIU 13 of 15

print(n)

n = n - 1

print("BOOOM! BLAST OFF!")

A loop to calculate a sum

answer = 0

counter = 1 # Count from 1 to 100

while counter <= 100:

print(counter)

answer = answer + counter

counter = counter + 1

print("The sum is", answer)

Repeat a fixed number of times

This prints a bunch of powers of two using a for loop.

count = 1

print(count)

for i in range(200):

count = count*2

print(count)

Repeat based on condition

This is a variation of the previous, where we find the first power of two that is larger
than ten million.

count = 1

while count <= 10000000:

count = count * 2

print(count)

Factorial calculation

n = int(input("Enter an integer >0: "))

k = 1

while n > 1:

k = k * n

n = n - 1

print(k)

14 of 15 Prof. League – Fall 2017 – Python language

Euclid’s greatest common divisor

a = int(input("Enter an integer >0: "))

b = int(input("Enter another integer >0: "))

while a != b:

if a < b:

b = b - a

else:
a = a - b

print(a)

Simulate coin flips

import random

numFlips = 10000000

numHeads = 0

for i in range(numFlips):

secretNumber = random.randrange(1,101)

if secretNumber > 50:

coinflip = "HEADS"

numHeads = numHeads + 1

else:
coinflip = "TAILS"

#print(coinflip)

percent = (numHeads / numFlips) * 100

print("There were", numHeads, "heads:",

percent, "%")

Miscellany

CS101 – Fundamentals of Computer and Information Sciences – LIU 15 of 15

Figure 9: @TrueValhalla on Twitter

https://twitter.com/TrueValhalla/status/438665765265240064/photo/1

	Install Python
	Start your program
	Printing messages
	Fixing errors
	Doing calculations
	Comments
	Getting input
	Boolean expressions
	Compound Booleans
	Conditional statement
	If/else chain
	Exercises
	Reopening your programs
	Other sample programs
	Calculate wage and taxes
	A loop to count down
	A loop to calculate a sum
	Repeat a fixed number of times
	Repeat based on condition
	Factorial calculation
	Euclid’s greatest common divisor
	Simulate coin flips

	Miscellany

