
CS101 Fundamentals of Computer and Information Sciences – LIU 1 of 17

2019-12-11 15:42
08d925d

Image encoding

Contents
1 Pixels and resolution 1

2 Black and white 1

3 Color images 4

4 Image formats 9

5 Image compression 11

6 Image steganography 12

1. Pixels and resolution
An digital image is broken up into tiny elements called pixels. (That word was coined
as a contraction of “picture element.”) A pixel is perceived as a solid color, and
neighboring pixels can be different colors.

When we refer to the resolution of an image or a display device, we might be talking
about two different things:

• The number of pixels in the image. For example, a typical low-resolution
computer screen might by 1024×768. This is 786,432 pixels total, or about
three-fourths of a megapixel. An high-deˋnition (HD) video image is 1920×1080,
or about 2 megapixels. Digital cameras can produce 5 or 10 megapixels or so,
which means the image is larger than you can ˋt on most screens.

• Resolution can also refer to the density of the pixels in the display – usually
referred to as pixels per inch (PPI) or dots per inch (DPI). Computer screens
tend to be around 100 ppi, but some are larger. The Apple Retina brand displays
are in the range 220–320 ppi. We can achieve much higher density using print
on paper: a high-end laser printer might be 1200 dpi or even higher. Projection
screens are likely very low density, just because the same number of pixels are
stretched over several feet.

2. Black and white
So how do we encode pixels as bits? The easiest case is when the image is completely
black and white. That is, each pixel is either on or off. Then we can represent each
pixel as exactly one bit.



2 of 17 Prof. League – Fall 2019 – Image encoding

On paper or a whiteboard, it’s sensible to let 0 = off = white (the default background
color) and 1 = on = black (the color of your pen). So let’s draw an 8×8 pixel grid. We’ll
ˋll in some pixels and leave others blank. This particular grid displays an alien from
the early arcade game Space Invaders.

18
3C
7E
DB
FF
24
5A
A5

12481248

Figure 1: 183C7EDBFF245AA5

Since each pixel is exactly one bit, it’s trivial to represent this as a binary number. The
top row is 00011000, followed immediately by the next row 00111100 and so on.
You’d have to know in advance that these bits represent an image that ˋts in an 8×8
grid. Otherwise, we could precede it by a few bytes to specify the grid size.

Again, binary strings are long so it’s nice to be able to abbreviate them using
hexadecimal. This leads to a very natural encoding where you write 8,2,4,1 over
each group of 4 pixels, and then convert the results. You can see the hexadecimal
encoding to the right of the image.

You should practice encoding and decoding icons like this. Here’s one example you
can decode from the hex.

38
6C
68
76
DC
CE
7B
00

12481248

Figure 2: Sample image decoding problem



CS101 Fundamentals of Computer and Information Sciences – LIU 3 of 17

To practice further, decode these additional characters from that font:

• 3C66703C0E663C00

• 7E607C0606663C00

• C6CCD8F0D8CCC600

• 00663CFF3C660000

• 0066ACD8366ACC00

You can also encode characters in hexadecimal based on the following font image.
(Right-click, view image, zoom in with control-plus to see the 8×8 grids over each
character cell.)

Figure 3: 8×8 pixel font

You can also use the 1-bit per pixel encoding with color as long as each encoded
image has one solid foreground color on a contrasting background. For example, in
older versions of the Pac-Man game, the protagonist and each ghost are solid colors,
even though the colors are all different. These shapes can still be encoded as 1 bit per
pixel.

Figure 4: Pac-Man game – each moving character is one solid color



4 of 17 Prof. League – Fall 2019 – Image encoding

Figure 5: A 1-bit per pixel display on campus

1en.m.wikiped
ia.org/wiki/
Arecibo_mess
age

2blogs.plos.o
rg/neurotrib
es/2011/11/2
2/the-sketc
hbook-of-sus
an-kare-the
-artist-who
-gave-compu
ting-a-human
-face/

Further exploration:

• This bitmap message1 was broadcast into space by the Arecibo radio telescope in
Puerto Rico in 1974.

• The Sketchbook of Susan Kare, the Artist Who Gave Computing a Human Face2

by Steve Silberman

3. Color images
How would we combine multiple colors into the same image? As a brief detour, let’s
explore what we mean by color.

What is color?
Color can simply refer to the wavelength of light. We perceive short wavelengths as
violet, and long wavelengths as red. In between are the usual spectrum of colors:
orange, yellow, green, blue, etc. This range covers visible light, but there are
also “colors” (other wavelength ranges) we can’t perceive at all. Light with longer
wavelengths than red is infra-red, and with shorter wavelengths than violet is
ultra-violet.

Figure 6: from How We See Color

Apart from the wavelength spectrum, the anatomy of our eyes leads to another way to
explain color. Our retinas contain light-sensitive cells known as rods and cones. The
rods are largely color-blind, but are sensitive to small amounts of light so they help
with night vision. The cones come in three ˌavors, sensitive to different wavelengths.

http://en.m.wikipedia.org/wiki/Arecibo_message
http://blogs.plos.org/neurotribes/2011/11/22/the-sketchbook-of-susan-kare-the-artist-who-gave-computing-a-human-face/
http://shutha.org/node/809


CS101 Fundamentals of Computer and Information Sciences – LIU 5 of 17

The wavelengths that generate a response overlap, so the “in-between” colors are
perceived as combinations of multiple cones.

Figure 7: from Color-Sensitive Cones

When you painted in elementary school, you may have learned about the three
primary colors: red, yellow, and blue. Red and yellow make orange, yellow and blue
make green, etc.

Figure 8: Subtractive Color Mixing from Color Theory – click through to see why it’s labeled
“misleading”

With subtractive color, mixing paints results in dark and darker colors. Most computer
displays, however, are based on additive color. In this model, we mix red, green, and
blue lights to make different colors.

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/colcon.html
http://www.gamonline.com/catalog/colortheory/language.php
http://en.wikipedia.org/wiki/Subtractive_color
http://en.wikipedia.org/wiki/Additive_color


6 of 17 Prof. League – Fall 2019 – Image encoding

Figure 9: Additive Color Mixing, again from Color Theory

“Subpixels”
A pixel in most display technologies is actually a composition of three different lamps.
They are so tightly packed that we usually cannot distinguish them independently, so
they activate our cones as if they were producing a single wavelength.

Figure 10: Two versions of an iPad display, under a microscope (iPad 3 on the left is a Retina
display)

On some large displays, you can see these “subpixels” with the naked eye, if you stand
close enough. The following is a close-up of the display outside the Brooklyn Academy
of Music on Flatbush Avenue. You can clearly see the pixels have six lamps: two red in
the center, and the green and blue on opposite corners.

I wrote a little program to render images in a simulation of the subpixel layout of
the BAM sign. If you right-click below and open Bart in a new tab, you can zoom in
(control-plus). You’ll see that what you perceive as yellow at a distance is actually just
red and green; the whites of Bart’s eyes are just red-green-blue.

http://www.gamonline.com/catalog/colortheory/language.php
https://github.com/league/subpixelize/blob/master/subpixelize.cpp


CS101 Fundamentals of Computer and Information Sciences – LIU 7 of 17

Figure 11: Subpixels visible with the naked eye

Color encoding
Now, back to encoding color images as bits. Imagine using 3 bits per pixel. (We call
the number of bits used to represent the color of a single pixel the color depth of the
image.) We would map each bit to one of the Red-Green-Blue primary lamps. That
leads to these eight colors:

• 0 = 000 = black

• 1 = 001 = blue

• 2 = 010 = green

• 3 = 011 = cyan

• 4 = 100 = red

• 5 = 101 = magenta

• 6 = 110 = yellow

• 7 = 111 = white

http://en.wikipedia.org/wiki/Color_depth


8 of 17 Prof. League – Fall 2019 – Image encoding

Some systems extended this to 4-bit color, using the 4th bit to indicate extra
brightness of all the lamps at once. That produces 16 colors like the following. See
also my 4-bit color demo.

Figure 12: from Wikipedia on the IBM Color Graphics Adapter (1981)

Now let’s expand to 6-bit color. Since it’s a multiple of 3, we can control the brightness
of each lamp independently: 2 bits for red, 2 bits for green, 2 bits for blue. We’ll
interpret the two bits as:

• 0 = 00 = off

• 1 = 01 = low

• 2 = 10 = medium

• 3 = 11 = high

Then the color 110110 combines bright red (11), dark green (01), and medium blue
(10). When all three lamps are the same brightness, we get shades of gray. so 000000
is black, 010101 is dark gray, 101010 is light gray, and 111111 is white. In total, there
are 26 = 64 possible colors with 6 bits.

We can apply the technique to any multiple of three: 9-bit color (512 possible colors),
12-bit color (4,096), and so on. Skipping these, our next stop will be 24-bit color. It’s
also known as true color, since it is believed to be more colors (16 million!) than any
human can distinguish anyway. Using 8 bits (one byte) for each lamp, we get to dial

http://contrapunctus.net/rgb-demo/4bit.html
http://en.wikipedia.org/wiki/Color_Graphics_Adapter


CS101 Fundamentals of Computer and Information Sciences – LIU 9 of 17

3youtu.be/iPP
YGJjKVco

the brightness from 0–255. Expressing these 8 bits as two hexadecimal digits, that
range is 00–FF.

So true colors are six-digit hexadecimal numbers, like 6B1CC6. Let’s decompose that
into bits:

6 B 1 C C 6
0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0
<-----Red------> <----Green-----> <-----Blue----->

With this color, we have the red lamp at 6B16 = 10710 (out of 255, or 42%) brightness.
The green lamp is 1C = 28 out of 255, or 11% brightness. The blue lamp is C6 = 198 out
of 255, or 78% brightness. Obviously, blue is the dominant color, with red next. Here
is a sample of 6B1CC6:

Further exploration:

• You can play with hex true colors by adjusting sliders in my 24-bit color demo

• There’s a color quiz called What the Hex?

• Video: Magenta doesn’t exist — Here’s why3 with Steve Mould, [5m14s]

• Example of physiological color afterimage, from BBC Four’s The Spectrum of
Science [video] and physicist Helen Czerski:

– False color

– Grayscale

4. Image formats
The representations we’ve explored so far – simply writing the bits representing pixel
colors – is known informally as a bitmap. There’s a BMP image format based on this,
but it contains additional bits to specify the color depth, image size, and some other
capabilities. The three formats we’ll concentrate on are PNG, JPEG, and GIF.

PNG (Portable Network Graphics) is a compressed image format that supports 24-bit
color. It’s a great choice for comics, drawings, logos, and icons.

JPEG (Joint Photographic Experts Group) is also compressed, but it’s designed
especially for photographs. Unlike PNG, the compression in JPEG is lossy – it actually
throws away some of the information in the original image, so it can achieve a smaller
ˋle size. In photographs the lossage is mostly not noticeable, although if you intend to
crop and edit your photos it’s best to compress only once, at the very end. Each time
you edit and save a JPEG, more information is lost.

GIF (Graphic Interchange Format) is a relatively old format, but it remains popular
in some applications mainly because it supports simple animation. The format can

http://contrapunctus.net/rgb-demo/index.html
http://yizzle.com/whatthehex/
https://youtu.be/iPPYGJjKVco
https://www.youtube.com/watch?v=3P8q_dCU3RI
https://www.youtube.com/watch?v=3P8q_dCU3RI
http://www.helenczerski.net/
assets/afterimage-false.jpg
assets/afterimage-bw.jpg


10 of 17 Prof. League – Fall 2019 – Image encoding

Figure 13: A (slightly exaggerated) look at using JPEG for line drawings, by Louis Brandy

contain a sequence of images that are then displayed in quick succession, and usually
looped. The pixel content is compressed using the lossless LZW algorithm.

data/66/2102e9-a14e-4709-ace6-eccce7151fc3/earth-anim.gif

The big weakness of GIF is that each image can use at most 256 colors. That’s because
the pixel data are encoded using 8 bits per pixel. A program that creates a GIF can
choose which 256 colors out of the full 16-million 24-bit colors to use, so that helps
a bit. But it remains a poor choice for photographs, which usually have subtle color
gradations across highlights and shadows.

http://lbrandy.com/blog/2008/10/my-first-and-last-webcomic/
data/66/2102e9-a14e-4709-ace6-eccce7151fc3/earth-anim.gif


CS101 Fundamentals of Computer and Information Sciences – LIU 11 of 17

5. Image compression
In this section, we’ll look in further detail about one method for lossless image
compression. This technique is known as Run-Length Encoding (RLE). We’ll use this
16×11 pixel ˌag image as an example. It is shown zoomed in on the left, so all the
pixels are independently visible, and then zoomed out on the right. The yellow strips
and darkened edges are meant to give it a slightly three-dimensional look.

The image uses the colors red, white, blue, yellow, dark red, and dark white (light
gray). Let’s represent the colors using 4 bits, where the fourth (left-most) bit indicates
brightness, as in the 1981 CGA image above, or my 4-bit color demo.

COLOR BITS HEX
red 1100 C
white 1111 F
blue 1001 9
yellow 1110 E
dark red 0100 4
dark white 0111 7

The simplest (bitmap) encoding is to write the four bits for each pixel, in order from
left to right and top to bottom. So in one byte, we can represent two pixels. The total
number of pixels is 16×11 = 176, so that’s 176÷2 = 88 bytes. The ˋrst few rows would
be encoded as these bytes (hex notation):

99 99 99 99 9C CC CC C4
9F 9F 9F 9F 9F FF FF E7
99 99 99 99 9C CC CC E4

To compress this image using run-length encoding, we would specify ˋrst the color,
and then the number of horizontal pixels to paint with that color. For example, the
ˋrst row would say “9 pixels of red, then 6 pixels of white, then 1 pixel of dark red.”
Each instruction can be encoded as one byte: the ˋrst four bits for the number of

http://contrapunctus.net/rgb-demo/4bit.html


12 of 17 Prof. League – Fall 2019 – Image encoding

pixels (up to 15), and then another four bits for the color of those pixels. So the ˋrst
row would be represented by just these three bytes:

99 6C 14

The second row would require many more instructions, because it alternates colors so
much:

19 1F 19 1F 19 1F 19 1F 19 5F 1E 17

Then the third row:

99 5C 1E 14

Unless every row contains a lot of alternation, this will tend to save quite a few bytes.
My estimate is:

Row 1: 3 bytes
Row 2: 12 bytes
Row 3: 4 bytes
Row 4: 10 bytes
Row 5: 4 bytes
Row 6: 12 bytes
Row 7: 4 bytes
Row 8: 3 bytes
Row 9: 3 bytes
Row 10: 3 bytes
Row 11: 2 bytes
TOTAL: 60 bytes (~32% reduction)

Further exploration:

• How JPEG handles colors and compression (with videos from Computerphile)

6. Image steganography
Steganography is a way of sending a secret message to someone, where the message is
“hidden in plain sight.” If you don’t know to look for it, you never notice it’s there.

This section demonstrates an image steganography program that I wrote. It takes
a normal true-color image and manipulates the lowest two bits of each color byte,
storing a secondary 6-bit color image there. The changes this entails are so minor, you
never notice they are there. (This works only with lossless compression; if you store
the photo as a typical JPEG, its lossy compression will disrupt the hidden image.) You
can reveal the hidden image by clicking the left-shift button («) six times.

http://petapixel.com/2015/05/24/how-jpeg-handles-colors-and-compression/
http://en.wikipedia.org/wiki/Steganography
https://github.com/league/stegano


CS101 Fundamentals of Computer and Information Sciences – LIU 13 of 17



14 of 17 Prof. League – Fall 2019 – Image encoding

4www.youtube.
com/watch?v=
-7FBPgQDX5o

 

• Steganography4, a 9-minute video I made that explains and explores this idea a
little further.

 

The image-within-image steganography technique works best with photographs,
where there are subtle gradations of color everywhere. If you start with a cartoon-style
image, with large solid blocks of unvarying color, it’s easier to see the hint of the inner
image. Here is an example. Depending on how good your monitor and eyes are, you
can make out some outlines of the 6-bit hidden image, before shifting the pixel values.

https://www.youtube.com/watch?v=-7FBPgQDX5o


CS101 Fundamentals of Computer and Information Sciences – LIU 15 of 17



16 of 17 Prof. League – Fall 2019 – Image encoding

 



CS101 Fundamentals of Computer and Information Sciences – LIU 17 of 17

It’s maybe even a little more visible when the inner image is a cartoon too.


	Pixels and resolution
	Black and white
	Color images
	Image formats
	Image compression
	Image steganography

