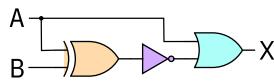
Midterm Exam

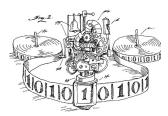
23 October 2019

	Practice	e version	
around. Choose any	name on the exam pay of the sign-in codes, we front of each page of	write your name next t	•
You have up to 1 ho	ur, 45 minutes. You ma	y use a calculator, but i	no text book or notes.
	ment below, fill in the bass might be used more		•
 hexadecimal 	ASCII • binary • bit • B • input • lossless • loss cree • two's complemen	sy • octal • output • pix	
	Neumann architecture	e, a device that receives	s data <i>from</i> the CPU is
	is a form r negative numbers.	at for binary numbers	that supports both
	is a 7-bit an English.	code for representing	the characters used
	ssion technique is calle produce the original da		if decompression
	is a ing data at branches an		er science for
2. Convert the fo	llowing base ten (decim	nal) numbers into binai	ry, using as many bits
• 14 =			
• 25 =			
• 86 =			


3.	Convert the	e followii	ng 5-bit sig	ned two's	compleme	nt binary	numbers	into	base
	ten. Note:	"signed"	means tha	t answers	might be n	egative.			

- 01011 = _____
- 10011 = _____
- 01111 = _____
- 11000 =
- 00101 = _____
- 4. Add the following pairs of 4-bit **fixed-size unsigned** binary numbers. Your answers must be in binary, but you should check you work by converting to base ten.

5. Convert the following binary number to octal and hexadecimal:


- 6. Suppose we want to design a custom character encoding just for the word **REVERE**
 - (a) How many bits would we need to represent **each distinct letter** if using a **fixed-width** encoding?
 - (b) Using the fixed-width representation in the previous question, how many bits would we need to encode the entire word **REVERE**? _____
 - (c) Draw a tree to represent a **variable-width** encoding of these letters. Use your tree to encode the word **REVERE**. How many bits did you need? _____

7. Which Boolean expression is equivalent to the following circuit diagram?

- (a) $X = A' + (A \oplus B)$
- (b) $X = A + (A \oplus B)'$
- (c) $X = A \oplus (A + B)'$
- (d) $X = A + (A \oplus B')$

8. This problem is about a program for a Turing Machine. Recall that a TM operates by reading and writing symbols on a tape that can be spooled to the left and right. For our program, each cell on the tape can contain either a zero (0), a one (1), or it can be blank (B).

The table below is a representation of a particular TM program. The TM keeps track of its current **state**, a small integer starting at 0.

The first row of the table says that if we're in state 0, and the symbol on the tape at the current position is a 0, we should write a 1 to that position, move the position to the **Right**, and stay in state **0**.

If the "next state" differs from the current state, that represents a **transition**. Use the new state for subsequent operations. Computation continues according to the instructions in the table, until we reach the "halt" state, when the machine stops.

rule	current	current write		move	next
number	state	symbol	symbol	to	state
1	0	0	1	R	0
2	0	1	0	R	0
3	0	В	В	L	1
4	1	0	1	R	halt
5	1	1	0	L	1
6	1	В	1	L	halt

Simulate the execution of the above Turing Machine program on a tape containing a 4-bit number surrounded by blanks, as shown below. The starting position is underlined (it's the leftmost 1):

	В	В	1	1	0	0	В	В	
--	---	---	---	---	---	---	---	---	--

What will be the contents of the tape when the machine halts?

9. Trace the following algorithm, which begins with two integer inputs, represented by variables *A* and *B*. Remember to indicate clearly what is *output* versus what is scratch work (memory).

Initialize the algorithm with A = 5 and B = 9.

- 1. Let A,B be two positive integers such that A<B
- 2. Set N to 0
- 3. Set K to A (copy the value of A into variable K)
- 4. If K > B then output N and stop.
- 5. Set N to N + K
- 6. Set K to K + 1
- 7. Go back to step 4

10. Briefly explain the main differences between **linear search** and **binary search**. Which algorithm has the best performance? What must be known about the data to apply each algorithm?