Midterm Exam

Wednesday 26 October 2011

For each statement below, fi Some terms might be used r		•			
algorithm • ASCII • bit •unicode	• Boolean • byte • hexadec	imal • pixel • pseudo-code			
	is a notation for algorithms that is more precise than lish, and easier to learn than a programming language.				
(b) A(n)	(n) is a tiny one-color element of a digital image.				
	is a numbering system that is useful in computing because its base is a power of two.				
(d)either true or false.	logic includes a set of o	operations on values that can be			
2. Write down the decimal (base 10) equivalents for the following 6-bit signed complement) binary numbers. (That means the answers might be negative					
0 0 1 1 1 1 =	00110	0 0 =			
0 1 1 0 1 1 =	10001	L O =			
1 0 0 1 0 1 =	1111	1 1 =			
3. Add the following pairs of 6 answers must be in binary, be decimal. Remember, values 1 0 1 0 1 0 1 0 + 0 1 0 0 1 1	out you may wish to check y can be negative!	our work by converting to			

4. Complete the following truth table. Add any extra columns you might need to compute intermediate results.

A	В	C	A or (B and C)	B or (A and C)	

5.	A digital image uses 6-bit color – two bits for each primary color (red, green, blue)
	What is the maximum number of colors possible?

6. Suppose you want to design a variable-width encoding for just the six letters E, I, L, M, P, and S. Draw a tree to represent your encoding, so that I and S use just two bits each, and the remaining letters use three bits each.

Use your encoding to convert the following words to bits:

(a)	SIMPLE	
(b)	MISSILE	
(c)	MISSISSIPPI	

- 7. Which of the following statements about *arrays* are true? Circle all that apply.
 - (a) An array is a variety of pseudo-code instructions that mean the same thing.
 - (b) Arrays are a way to group many pieces of data using the same variable name.
 - (c) An array uses a numbers to represent distinct locations.
 - (d) An array is a type of output statement.

8. Use the following 8×8 grid to decode the hexadecimal image notation, using 1 bit per pixel.

- 9. What is the output of the following algorithm? Remember to indicate clearly what is *output* and what is scratch work.
 - 1. Set N to 0
 - 2. Set K to 1
 - 3. If K > 5 then output N and stop.
 - 4. Set N to N + K
 - 5. Set K to K+1
 - 6. Go back to step 3.

10. What is the output of the following algorithm?

- 1. Set A to 1
- 2. Set B to 1
- 3. If B > 5 then output B and stop.
- 4. Output A
- 5. Set T to A + B
- 6. Set A to B
- 7. Set B to T
- 8. Go back to step 3.

11. What is the output of the following Python program?

```
1 fee = 4
2 fo = 2
3 fum = fee + fo
4 print "fee"
5 print fo+1
6 print "fum-1"
```