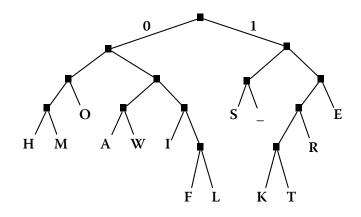
Practice Midterm

6 March 2013

You have up to 1 hour, 45 minutes. You may use a calculator, but no text book or notes.

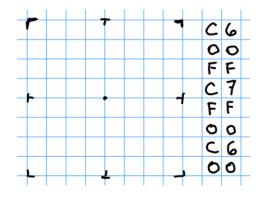

- 1. For each statement below, fill in the blank with the *best* term from the following list. Some terms might be used more than once; some might not be used at all.
 - algorithm ASCII bit Boolean byte hexadecimal pixel pseudo-code
 Python unicode
 - (a) _____ is base 16 notation, which uses digits 0–9 and letters A-F.
 - (b) _____ is an encoding of characters used in all the world's languages.
 - (c) _____ is a way of describing a computational technique to other humans using carefully structured English.
 - (d) ______ is a high-level programming language used to instruct computers.
- 2. Write down the decimal (base 10) equivalents for the following 6-bit signed (two's complement) binary numbers. (That means the answers might be negative!)

0 0 1 1 1 0 =	0 0 1 0 1 0 =
1 1 1 1 0 0 =	1 0 1 0 0 0 =
0 1 1 0 1 1 =	1 1 0 1 0 0 =

3. Add the following pairs of 5-bit signed (two's complement) binary numbers. Your answers must be in binary, but you may wish to check your work by converting to decimal. Remember, values can be negative!

+ 1 1 1 0 0	+ 1 0 1 1 0	+ 0 1 1 0 0
0 0 1 0 0	1 1 1 1 1	0 1 1 0 0

4. Below is a tree representing a variable-width encoding.


(a) Use the tree to encode the following message in binary:

Т	R	E	E		F	L	0	W
				_				

- (b) The tree contains 14 distinct characters. If we were using a *fixed-width* encoding of the same characters, how many bits per character would we need? ______
- (c) The message in part (a) is 9 characters. How many bits did we save by using a variable-width encoding instead of a fixed-width one?_____

5. Create a truth table to show the value of $X' + (X \cdot Y)$ for all possible inputs of X and Y.

6. Decode the following hexadecimal notation into an 8×8 icon, using 1 bit per pixel.

- 7. What is the output of the following algorithm? Remember to indicate clearly what is *output* and what is scratch work.
 - 1. Set N to 0 $\,$
 - 2. Set K to 1
 - 3. If K > 4 then output N and stop.
 - 4. Set N to N + K
 - 5. Set K to K + 1
 - 6. Go back to step 3.

8. What is the output of the following algorithm?

```
    Set N to 13
    Output N
    If N = 1 then stop
    If N is even, then set N to N/2
Otherwise set N to 3*N + 1
```

5. Go back to step 2.

9. What is the output of the following Python program?

```
alpha = 6
beta = 2
print "alpha + beta"
print alpha - beta
gamma = alpha - 1
print gamma*2
```