Quiz 1 Solution

8 February 2013

1. Using 7-bit signed (two's complement) binary numbers, what is the largest positive number? What is the smallest negative number?
In 7-bit two's complement, the column values are:

---	---	---	---	---	---	---
-64	32	16	8	4	2	1

So the largest positive number is $0111111=63$ and the most negative number is $1000000=-64$.
2. Convert the following 16-bit binary number into hexadecimal.

```
842148421484 2 1 8 4 2 1
------- ------- ------- -------
```



```
    7 F 3 A
```

3. Add and verify the following unsigned binary numbers.

$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$1 \quad 1$
$\begin{array}{lllllll}1 & 0 & 1 & 1 & 1 & 1\end{array}=47$	$\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 1\end{array}$
$+011101=29$	$+100100=36$
$1001100=76$	$1011011=91$
3282	3282
$\begin{array}{llll}64 & 16 \quad 4\end{array}$	$\begin{array}{llll}64 & 16 \quad 4 \quad 1\end{array}$

4. Suppose we need to send a text message uses just 15 distinct characters. How many bits per character are required if we're using a fixed encoding?
We need 4 bits per character, which allows 16 distinct characters to be represented.
5. Draw a binary tree that corresponds to the following variable-width encoding of four characters. The characters should appear in boxes at the leaves. Branch left on a zero, or right on a one.

T 00
R 010
N 011
01

Figure 1:
6. Use the character encoding from the previous question to decode the following word:

```
0 0,1,0 1 0,1,0 1 1,0 0,1
    T O R O N T O
```

