
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 5

Assignment 2 – text compression
due in class on Tue 18 Feb (40 points)

is assignment is an activity for groups of three. We’ll work on it in class on Wed 5
Feb, and then your groupmust submit one set of responses to the six questions before
the deadline.

Introduction

In this activity, wewill investigate theHuffman algorithm for text compression. You’ve
already seen one example of a Huffman encoding, represented by the strange-looking
tree on the handout labeled “variable-bit Huffman encoding.”

You will follow the Huffman algorithm and create a tree of your own, based on the
character frequencies of a message that I provide.

Phase 1: count letter frequency

Start with a stack of blank sticky notes and themessage youwere given. We’re going to
consider each of the characters in your message, in order. Suppose the first character
is aG.Wewouldwrite theGona stickynote– roughly at the center left – andalsobegin
a tally in the lower left corner. Leave some space above and below the character, as
shown:

Move on to the next character in your message. Assuming it is a different character,
make a new sticky for that one.

When you encounter a character that you’ve seen before, do not create a new note,
but instead update the tally on the existing note containing that character. In this
example, we’ve just seen the character E for the third time:



2 of 5 Prof. League – Spring 2014 – Assignment 2 – text compression

Continue doing this for the entire length of your message. You will now have a count
of the frequencies of each character. Write the frequency in conventional (base ten)
notation in the upper left. Here’s a small sample:

In the next section, we will process these characters in order from lowest frequency
to highest. So you may want to take a moment now to arrange them in roughly that
order on your desktop.

Question 1: Howmany distinct characters did your message contain?

Question 2: If we were using a fixed-width encoding, how many bits would you need
to represent just those characters?

Question 3: What is the most frequent character in your message, and how many
times did it appear?

Phase 2: merge tiles

e algorithm continues by repeatedly merging sticky notes, as described here. Start
by choosing two notes with the lowest frequencies. Probably you had several charac-
terswith a frequency of one, so you can just choose two of themarbitrarily. Place them
side by side in your work area:



CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 5

In the section beneath the character and starting from the right, write a zero on the
left note and a one on the right note:

en, stick the right one onto the bottomof the left one. Cross out the frequencies and
replace the top one with their sum – in this case, 1+1 is 2:

Now you will treat this ‘merged’ note as if it were a single one, so place it somewhere
among other characters with frequency=2.

Continue merging together your lowest-frequency letters like this. It’s okay to pair
a frequency=1 with a frequency=2 if it’s the last frequency=1 remaining – then the
merged frequency would be 3.

Before long, you’ll have to merge notes that themselves are already merged. In the
example below, we paired the last frequency=1 character (K) with a group (MJ) that
has frequency=2:



4 of 5 Prof. League – Spring 2014 – Assignment 2 – text compression

As before, wewrite a zero on the left note. Andwewrite ones on all of the right notes…
to the left of whatever code is already there:

Again, stick the right note onto the bottom of the left one. Cross out the frequencies
and replace the top one with their sum – in this case, 1+2 is 3.

Continuemerging notes using this technique until every character in yourmessage is
merged into one big note. en you will have a distinct binary encoding underneath



CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 5

each character. Probably you should take aphotoof your encoding, and/orwrite down
the bits produced for each character elsewhere.

Question 4: Howmany bits are used to represent themost frequent character in your
message?

Question 5: What is the most number of bits used to encode any character in your
message?

Question 6: Use the character encodings you produced to encode the entire message
you were given. Howmany bits are used, in total?

Visualize encoding as a tree

As in thehandout on variable-bitHuffmanencoding, the character encodings youpro-
duced should fit nicely into a binary tree. I’ll do a small example below. Our algorithm
has produced the encodings 00 for K, 010 forM, 011 for J, and 1 for E.

We interpret a 0 as choosing the left path in a binary tree, and 1 as the right path. So
to get to the K from the root we would go left, twice. For the E, we go right just once.
e M and J both have the prefix 01, so they sit at a “sub-tree” reached by going left
then right.

Task: Draw the entire tree corresponding to the character encoding you produced
using the Huffman algorithm.


	Introduction
	Phase 1: count letter frequency
	Phase 2: merge tiles
	Visualize encoding as a tree

