Assignment 6 - pseudo-code

SKIPPED - you will receive full credit

This assignment is an individual activity. It asks you to interpret and write algorithms using the pseudo-code notation we have studied in class.

1. Read the pseudo-code below and answer the questions that follow.
```
step 1. let Y be X + 5
step 2. if Y > 0 then set X to Y * 2
step 3. set X to X * 3
step 4. output X
```

a. Does this algorithm contain a conditional statement? If so, which one?
b. Does this algorithm contain iteration? If so, which steps repeat?
c. Trace the algorithm with the input $\mathrm{X}=4$. What does it output?
d. Trace the algorithm with the input $\mathrm{X}=-3$. What does it output?
e. Trace the algorithm with the input $\mathrm{X}=-7$. What does it output?
2. In this problem, you will write down an algorithm to add two-digit numbers in base ten. As shown in the figure, your input variables are $\mathrm{X}_{1}, \mathrm{X}_{0}, \mathrm{Y}_{1}$, and Y_{0}. Each variable holds a single-digit integer.

When your algorithm is finished, the answer should be in the variables $\mathrm{Z}_{2}, \mathrm{Z}_{1}$, and Z_{0} - each holding a single digit. For example, if I want to add $56+94$, the algorithm will start with

$$
\begin{array}{ll}
X 1=5 & X 0=6 \\
Y 1=9 & Y 0=4
\end{array}
$$

and in the end, the Z variables will have the result:

$$
Z 2=1 \quad Z 1=5 \quad Z 0=0
$$

Your algorithm should work for any single-digits provided in the input variables.
3. Here, C refers to a sequence of variables (an array), and the notation $C[I]$ uses the value of I to determine which C to access.

```
step 1. set K to C[1]
step 2. set N to 1
step 3. set I to 2
step 4. if I > 7 then output N then K and stop
step 5. if C[I] = K then set N to N+1 and go to step 9
step 6. output N then K
step 7. set K to C[I]
step 8. set N to 1
step 9. set I to I+1
step 10. go back to step 4.
```

Below are the initial values of the array, and other variables you will use.

$$
\begin{aligned}
\mathrm{K} & : \\
\mathrm{N} & : \\
\mathrm{I} & : \\
\mathrm{C}[1] & : \text { apple } \\
\mathrm{C}[2] & : \text { apple } \\
\mathrm{C}[3] & : \text { banana } \\
\mathrm{C}[4] & : \text { carrot } \\
\mathrm{C}[5] & \text { : carrot } \\
\mathrm{C}[6] & : \text { carrot } \\
\mathrm{C}[7] & : \text { date }
\end{aligned}
$$

What is the output of the algorithm?

