
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 9

Number systems and binary

Here are some informal notes on number systems and binary numbers. See also sec-
tions 3.1–3.2 of the textbook.

Positional numbering system

Our normal number system is a positional system, where the position (column) of a
digit represents its value. Starting from the right, we have the ones column, tens col-
umn, hundreds, thousands, and so on. us the number 3724 stands for three THOU-
SAND, seven HUNDRED, two TENS (called twenty), and four ONES.

e values of those columns derive from the powers of ten, which is then called the
base of the number system. e base ten number system is also called decimal.

ere is nothing special about base ten, except that it’s what you learned froma young
age. A positional numbering system can use any quantity as its base. Let’s take, for
example, base five. In base five, the columns represent the quantities ( from right to
left) one, five, twenty-five, and a hundred twenty-five. We need to use five symbols to
indicate quantities from zero up to four. For simplicity, let’s keep the same numerals
we know: 0, 1, 2, 3, and 4.

e number shown in this figure, 3104 in base five, represents the same quantity that
we usuallywrite as 404 in base ten. at’s because it is three × one hundred twenty-five
(= 375), plus one × twenty-five (= 25) plus four ones (= 4), so 375 + 25 + 4 = 404.

You can count directly in base five; it looks like this: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20,
21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 100. (ose correspond to quantities
from zero to twenty-five.)

You should try counting and converting between other bases. Below is an interesting
video overview of the dozenal (base twelve) number system.



2 of 9 Prof. League – Spring 2014 – Number systems and binary

Binary numbers

Computer systems use binary numbers – that just means they are in base two. Using
two as the base is really convenient and flexible, because we need only two ‘symbols’
and there are so many ways we can represent them: zero/one, on/off, up/down, high-
/low, positive/negative, etc.

In binary, the columns are ( from right to left) 1, 2, 4, 8, 16, 32, and so on. Using a zero
means we exclude that column’s quantity, and a one means we include it.

So the binary number 10110 is the quantity 16 + 4 + 2 = 22. Each binary digit (a one or
a zero) is called a bit. e largest five-bit binary number, then is 11111 = 16 + 8 + 4 + 2
+ 1 = 31.

It’s worthwhile to learn to count in binary, at least from zero to fifteen:

0000 = 0 0100 = 4 1000 = 8 1100 = 12

0001 = 1 0101 = 5 1001 = 9 1101 = 13

0010 = 2 0110 = 6 1010 = 10 1110 = 14

0011 = 3 0111 = 7 1011 = 11 1111 = 15



CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 9

Binary arithmetic

It’s relatively easy to add numbers directly in binary. Line up the columns and then
proceed from right to left, as usual. ere are only four possible cases:

• If a column has no ones, write a zero below.
• If a column has one one, write a one below.
• If a column has two ones, write a zero and carry a one to the next column (to the left).
• Finally, if a columnhas three ones (possible due to an incoming carry), write a one and
carry a one to the next column.

Below is an example of adding 10110 plus 11100. e result is 110010, and you can see
the carry bits above the original numbers, in orange.

When adding this way, it’s always a good idea to check your work by converting the
numbers to decimal and checking the addition. In this case, we’re adding 22 (10110)
to 28 (11100) to get 50 (110010).

Fixed-size binary numbers

We generally arrange numbers along a line, that goes off to infinity. Indeed, in binary
we can always continue counting by adding more and more columns that are powers
of two.

However, in most computer systems and programs we use fixed-size numbers. at
is, we decide in advance how many bits will be used to represent the number. For
example, a 32-bit computer represents most of its numbers and addresses using 32
bits. e largest such number is 2³²–1 = 4,294,967,295.

When your numbers have a fixed number of bits, then there is no number line heading
off into infinity. Instead, we arrange the numbers around a circle, like a clock. Below is
the number wheel for 3-bit integers. e smallest 3-bit integer is zero, and the largest
is seven. en, if you attempt to keep counting, it just wraps around to zero again.



4 of 9 Prof. League – Spring 2014 – Number systems and binary

When you perform arithmetic with fixed-size numbers, you throw away any extra
carry bit; the result cannot exceed the designated size. For example, seewhat happens
if we try to add 110 + 011 using 3-bit integers:

In 3-bit arithmetic, 6 plus 3 is 1. You can make sense of this on the number wheel.
Addition corresponds to walking clock-wise around the wheel. So start at 6, and go
clockwise by 3. at lands on 1, which is 6+3.

Below is a video about fixed-size binary numbers in old video games.

Signedmagnitude

Now we’ll look at signed numbers – that is, numbers that can be positive or negative.
ere are two techniques for encoding signed numbers. e first one is called signed
magnitude. It appears simple at first, but that simplicity hides some awkward prop-
erties.

Here’s how it works. We use a fixed width, and then the left-most bit represents the
sign. So 4-bit signed magnitude looks like this:

___ ___ ___ ___

sign 4 2 1

where having the sign bit set to ‘1’ means the magnitude is interpreted as negative.
us, 0110 is +6 whereas 1110 is -6. In this system, the largest positive number is
0111 = +7 and the most negative number is 1111 = -7.



CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 9

One of the unfortunate effects of this representation is there are two ways to write
zero: 0000 and also 1000. ere is no such thing as negative zero, so this doesn’t really
make sense.

Two’s complement

e second way to represent signed quantities is called two’s complement. Although
this looks trickier at first, it actually works really well. Below is the interpretation of
4-bit two’s complement. All we need to do compared to normal unsigned numbers is
negate the value of the left-most bit.

___ ___ ___ ___

-8 4 2 1

So +6 is 0110 as before, butwhat about -6? Weneed to turn on the negative 8, and then
add two: 1010. To represent -1, you turn on all the bits: 1111, because that produces
-8+4+2+1 = -8+7 = -1.

e nice thing about two’s complement is that you can add these numbers and every-
thing just works out. Let’s try adding 7 and -3:

0 1 1 1 = 7

1 1 0 1 = -3

--------- ----

0 1 0 0 = 4

It’s also relatively easy to negate a number – that is, to go from +6 to -6 or from -3 to
+3. Here are the steps:

1. First, flip all the bits. at is, all the zeroes become ones and all the ones become
zeroes.

2. Next, add one.

For example here is how we produce -6 from +6:

0 1 1 0 = +6

1 0 0 1 (flip all the bits)

+ 1 (add one)

---------

1 0 1 0 = -6

You don’t even have to reverse these steps in order to convert back:



6 of 9 Prof. League – Spring 2014 – Number systems and binary

1 0 1 0 = -6

0 1 0 1 (flip all the bits)

+ 1 (add one)

---------

0 1 1 0 = +6

Here’s a cartoon from XKCD about counting sheep using two’s complement!

Figure 1: Howmany bits is this person using?

Octal and hexadecimal

Finally, I want to introduce two number systems that are very useful as abbreviations
for binary. ey work so well because their bases are powers of two.

Octal is base eight, so we use the symbols 0–7 and the values of the columns are:

___ ___ ___ ___

512 64 8 1

8³ 8² 8¹ 8�

e real value of octal, however, is that each octal digit maps to exactly three binary
digits. So, on octal number like 3714maps as shown:

3 7 1 4 octal number

0 1 1 1 1 1 0 0 1 1 0 0 binary number

(4 2 1 4 2 1 4 2 1 4 2 1)

Hexadecimal is base sixteen, so we use the symbols 0–9 and then A to represent ten,
B for eleven, and so on up to F for fifteen. e values of the columns are:

____ ____ ____ ____

4096 256 16 1

16³ 16² 16¹ 16�

http://xkcd.com/571/


CS101 – Fundamentals of Computer and Information Sciences – LIU 7 of 9

So a hexadecimal number like 2A5C has the value 2×4096 + 10×256 + 5×16 + 12×1

= 10844 in base ten.

In hexadecimal, each digit maps to exactly four bits. So here is that same number in
binary:

2 A 5 C

0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0

(8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1)

Below are two great video overviews of hexadecimal. (Note when you watch these –
the Brits often pronounce zero as ‘naught’.)

Practice problems

3. Convert the following base ten (decimal) numbers into binary.

a. 6
b. 18
c. 51
d. 63

4. Convert the following unsigned binary numbers into base ten.

a. 1010
b. 1101
c. 1000
d. 10001

5. What do all odd numbers have in common, whenwritten in binary? (Hint: try writing
the quantities 3, 5, 7, 9, 11 in binary.)

6. Using 7-bit signed (two’s complement) binary numbers, what is the largest positive
number? What is the most negative number?

7. Convert the following 5-bit signed (two’s complement) binary numbers into base ten.

a. 01101
b. 01111
c. 10011
d. 11111



8 of 9 Prof. League – Spring 2014 – Number systems and binary

8. Convert the following 16-bit binary number into hexadecimal, and then into octal.

0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0

9. Convert the following hexadecimal numbers into binary:

a. 9D
b. C4
c. A17E

10. Add and verify the following unsigned binary numbers.

1 0 1 1 1 1 1 1 0 1 1 1

+ 1 1 1 0 1 + 1 0 0 1 0 0

�������������� ��������������

Solutions here

Extra: floating-point

q1-pr-sol.html


CS101 – Fundamentals of Computer and Information Sciences – LIU 9 of 9

Figure 2: @jaffathecake on Twitter

https://twitter.com/jaffathecake/status/438231637931745280/

	Positional numbering system
	Binary numbers
	Binary arithmetic
	Fixed-size binary numbers
	Signed magnitude
	Two’s complement
	Octal and hexadecimal
	Practice problems
	Extra: floating-point

