
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 7

Assignment 1 – text compression
due at 23:59 on Tue Feb 10 (50 points)

Introduction

In this activity, we will investigate the Huffman algorithm for text compression.
You’ve already seen one example of a Huffman encoding, represented by the
strange-looking tree on the handout labeled “variable-bit Huffman encoding.”

You will follow the Huffman algorithm and create a tree of your own, based on the
character frequencies of a message that I provide. The video below illustrates the
algorithm on paper. I apologize that the resolution and audio quality aren’t great,
but it should be understandable. The final encoding and tree are also pictured below.

The technique in the rest of this document refers to using sticky notes and only draw-
ing the tree at the end. Either way, the result should be the same. (The sticky notes
were a little harder to manage on video.)

*Error at 21:54 – 39×5 should be 195 bits.

Figure 1: The tree I produced

You should also answer the six questions embedded in the text below: three at the
end of phase 1, and three at the end of phase 2. At the very end of this document,
you’ll see details on how to submit, on Blackboard.

a1-phrases.html


2 of 7 Prof. League – Spring 2015 – Assignment 1 – text compression

Figure 2: Encoding the phrase using that tree, result is 148 bits

Phase 1: count letter frequency

Start with a stack of blank sticky notes and the message you were given. We’re go-
ing to consider each of the characters in your message, in order. Suppose the first
character is a G. We would write the G on a sticky note – roughly at the center left
– and also begin a tally in the lower left corner. Leave some space above and below
the character, as shown:

Move on to the next character in your message. Assuming it is a different character,
make a new sticky for that one.

When you encounter a character that you’ve seen before, do not create a new note,
but instead update the tally on the existing note containing that character. In this
example, we’ve just seen the character E for the third time:

Continue doing this for the entire length of your message. You will now have a count
of the frequencies of each character. Write the frequency in conventional (base ten)
notation in the upper left. Here’s a small sample:



CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 7

In the next section, we will process these characters in order from lowest frequency
to highest. So you may want to take a moment now to arrange them in roughly that
order on your desktop.

Question 1: How many distinct characters did your message contain?

Question 2: If we were using a fixed-width encoding, how many bits (per character)
would you need to represent just those characters?

Question 3: What is the most frequent character in your message, and how many
times did it appear?

Phase 2: merge tiles

The algorithm continues by repeatedlymerging sticky notes, as described here. Start
by choosing two notes with the lowest frequencies. Probably you had several char-
acters with a frequency of one, so you can just choose two of them arbitrarily. Place
them side by side in your work area:

In the section beneath the character and starting from the right, write a zero on the
left note and a one on the right note:



4 of 7 Prof. League – Spring 2015 – Assignment 1 – text compression

Then, stick the right one onto the bottom of the left one. Cross out the frequencies
and replace the top one with their sum – in this case, 1+1 is 2:

Now you will treat this ‘merged’ note as if it were a single one, so place it somewhere
among other characters with frequency=2.

Continue merging together your lowest-frequency letters like this. It’s okay to pair
a frequency=1 with a frequency=2 if it’s the last frequency=1 remaining – then the
merged frequency would be 3.

Before long, you’ll have to merge notes that themselves are already merged. In the
example below, we paired the last frequency=1 character (K) with a group (MJ) that
has frequency=2:

As before, we write a zero on the left note. And we write ones on all of the right
notes… to the left of whatever code is already there:



CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 7

Again, stick the right note onto the bottom of the left one. Cross out the frequencies
and replace the top one with their sum – in this case, 1+2 is 3.

Continuemerging notes using this technique until every character in yourmessage is
merged into one big note. Then you will have a distinct binary encoding underneath
each character. Probably you should take a photo of your encoding, and/or write
down the bits produced for each character elsewhere.

Question 4: How many bits are used to represent the most frequent character in
your message?

Question 5: What is the most number of bits used to encode any character in your
message?

Question 6: Use the character encodings you produced to encode the entiremessage
you were given. How many bits are used, in total?



6 of 7 Prof. League – Spring 2015 – Assignment 1 – text compression

Visualize encoding as a tree

As in the handout on variable-bit Huffman encoding, the character encodings you
produced should fit nicely into a binary tree. I’ll do a small example below. Our
algorithm has produced the encodings 00 for K, 010 for M, 011 for J, and 1 for E.

We interpret a 0 as choosing the left path in a binary tree, and 1 as the right path. So
to get to theK from the root we would go left, twice. For the E,we go right just once.
The M and J both have the prefix 01, so they sit at a “sub-tree” reached by going left
then right.

Task: Draw the entire tree corresponding to the character encoding you produced
using the Huffman algorithm.

How to submit

In the “Assignment 1 submission” on Blackboard, you should answer the six ques-
tions in the text box provided after clicking the “Write Submission” button. To up-
load your drawing, take a clear picture of it, and then upload the jpg photo using the
button labeled “Browse My Computer.”



CS101 – Fundamentals of Computer and Information Sciences – LIU 7 of 7


	Introduction
	Phase 1: count letter frequency
	Phase 2: merge tiles
	Visualize encoding as a tree
	How to submit

