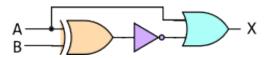
Practice midterm

18 March 2015

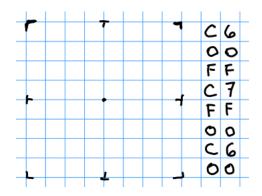
You have up to 1 hour, 45 minutes.	You may	use a	calculator,	but no	text	book	or
notes.							

	notes.					
l.	r each statement below, fill in the blank with the <i>best</i> term from the following list. me terms might be used more than once; some might not be used at all.					
	 algorithm • ASCII • binary • bit • Boolean • byte • compression hexadecimal • lossless • lossy • octal • pixel • resolution • searching • sorting tree • two's complement • Unicode 					
	(a) is the name of a numbering system in which each digit corresponds to exactly four bits.					
	(b) A(n) is exactly 8 bits.					
	(c) is an encoding of characters used in American English using 7 bits per character.					
	(d) refers to the density of pixels in a display, or the number of pixels in an image.					
	(e) A compression technique is described as if it discards some information in order to save space.					
2.	Write down the decimal (base 10) equivalents for the following 6-bit signed (two's complement) binary numbers. (That means the answers might be negative!)					
	1 1 0 0 1 0 = 1 1 1 1 0 1 =					
	1 1 0 1 1 0 = 0 1 0 0 0 1 =					
	0 0 0 1 0 1 = 1 1 1 1 1 1 =					
3.	Add the following pairs of 5-bit signed (two's complement) binary numbers. Your answers must be in binary, but you should check your work by converting to decimal. Remember, values can be negative!					

0 0 1 0 0 = 1 0 1 0 1 = 1 0 1 1 0 = + 0 0 1 0 0 = + 1 0 0 0 1 =



- 4. Suppose we want to design encodings just for the five letters A, H, M, N, and T.
 - (a) How many bits would we need to represent each letter in a **fixed-width** encoding? _____
 - (b) Using the fixed-width encoding in the previous question, how many bits would we need to represent the nine-letter word MANHATTAN? ______
 - (c) Draw a tree to represent a **variable-width** encoding of these five letters. Use your tree to encode the word MANHATTAN. How many bits did you need?


 _____ How many bits did you *save*, compared to the fixed-width encoding?

5. Create a truth table to show the value of $X' + (X \cdot Y)$ for all possible inputs of X and Y.

6. Which Boolean expression is equivalent to the following circuit diagram?

- (a) $X = A' + (A \oplus B)$
- (b) $X = A + (A \oplus B)'$
- (c) $X = A \oplus (A + B)'$
- (d) $X = A + (A \oplus B')$
- 7. Decode the following hexadecimal notation into an 8×8 icon, using 1 bit per pixel.

8. Convert the following binary number into hexadecimal and octal.

1010111001100100

9. It's important that the steps in an algorithm are **unambiguous**. What does that mean?

10. What makes a binary search faster than linear search?