Practice final

4 May 2016

You have up to 1 hour, 45 minutes. You may use a calculator, but no text book or notes.

1.		each statement below, fill in the blank with the <i>best</i> term from the following list. e terms might be used more than once; some might not be used at all.
	• mi	TML • HTTP • IP address • domain name • foreign key • frequency analysis inimax • operating system • password • postfix • prefix • primary key blic key • table
	(a)	is the main language in which the structure and content of a web page is specified.
	(b)	$\label{eq:Anomaly} A(n) \ \underline{\hspace{1cm}} \ \ is \ an \ attribute \ in \ a \ database \ table \ whose \ value \ references \ a \ record \ in \ a \ different \ table.$
	(c)	is a notation for arithmetic in which the operator is written $\it after$ the operands, such as 3 5 +
	(d)	is a technique for trying to decrypt a message without requiring access to the shared secret. It's especially effective in a monoalphabetic code.
	(e)	A(n) is a numeric identifier for each machine on the Internet. The current version is 32 bits.
2.	Whi	ch of the following schemes is the more secure authentication mechanism?
	(a)	A three-character password, using upper- and lower-case letters and digits.
	(b)	A four-character password, using just lower-case letters.
	-	ain why. Recall that we can quantify the security of a password using the number ossible passwords.

3. Explain how presenting a photo ID in the physical world is an example of *two-factor authentication*.

4. Evaluate the following *prefix* expression. What result does it produce?

```
(* (+ 3 5) (- 6 2))
```

5. Convert the prefix expression from the previous question into *postfix* notation.

- 6. Describe the main purpose of the Domain Name Service (DNS).
- 7. What is the output of the following Python program?

```
four = 4
six = four + 2
print("six is six")
six = six - 3
print(six+1)
four = four * four
print(four+4)
print("five * four")
```

8. What is the output of the following Python program?

```
xy = 5
zq = 3
print(xy*2)
if xy > 7:
    print("yes")
print(xy + zq)
print("xy")
```

9. The three tables below are a simplification of the database for a social networking web site, like Facebook. There is one main table, 'User', and two other tables that contain foreign keys to 'User'.

User:

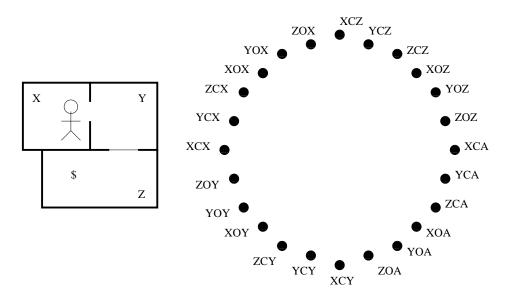
ID*	Name	Birthday	Password hash
1	Alice Anwar	1974/08/18	cf6a52053ff904bca9d96fd4e7740d7d
2	Bob Björk	1989/11/07	75e22f4965738386cbe02bca10d3120d
3	Carl Carlson	1993/05/03	61aa5b6c78fa4e3636069347ae39df10
4	Denise Doe	1989/12/21	98246ef16a87c12407e5fada044f591e
5	Edward Eng	1990/11/19	1ca30cd59f0b566f9ef3a8208679585e
6	Francine Fuentes	1992/03/25	e5dbb7657f770fad038220f5c69d806c

Friendship — indicates which users are friends with which other users:

User 1 ↑	User 1 ↑ User 2 ↑		Date		
1	2	approved	2014/12/10		
1	4	approved	2014/03/24		
1	5	approved	2015/05/06		
2	3	approved	2015/11/01		
2	4	approved	2015/08/03		
3	4	approved	2014/09/04		
3	5	requested	2014/08/04		
4	6	approved	2014/03/08		

Wall Messages — sent between users:

Sender↑	Receiver↑	Date/time	Message
1	2	2016/04/05 11:51	"Hey man!"
1	5	2016/04/05 16:40	"What r u doing tonite?"
2	1	2016/04/05 17:45	"Send me some tunez"
2	3	2016/04/05 21:18	"Love that pic, LOL"
4	2	2016/04/05 23:00	"This prof is trying my patience."
3	1	2016/04/06 00:05	"Ugh, tired"
2	4	2016/04/06 06:37	"You rock!"


(a)	Which user is the youngest?	
(b)	Which user has the most friends?	
(c)	The oldest friendship in the database is between which two users?	

(d) Name all the friends of Bob Björk.

(e) Are there any wall messages between users who are *not* friends? Which ones?

- 10. This question is about planning using graph search in AI. Imagine a castle with 3 rooms, called X, Y, and Z. An adventurer starts in room X, and there is a treasure in room Z. Between rooms Y and Z is a closed (but not locked) door. See the map in the left side of the figure below. We can represent the entire state of this world using just three letters:
 - the room containing the adventurer (X, Y, or Z);
 - the status of the door (O for open, or C for closed); and
 - the room containing the treasure (X, Y, Z, or A if the adventurer is carrying it).

That produces a total of 24 states ($3 \times 2 \times 4$). There are eight possible actions: north / south / east / west / open door / close door / take treasure / drop treasure. Of course, not all actions are possible from all states. From the start state, XCZ, the only possible action is **east**, which puts us in state YCZ.

The right side of the diagram above depicts all 24 states, arrange in a circle so it is easy to draw lines between any two states.

- (a) In your own words, describe the meaning of the state ZCY.
- (b) Using the graph above, trace a complete path from the start state XCZ to the goal state XOX. (This corresponds to fetching the treasure, carrying it back to room X, and dropping it there.)
- (c) How many states would there be if we added another room, *W*, to the west of *X*?

11. In an attempt to conceal the character frequencies that are the downfall of a monoal-phabetic substitution, the Vigenère technique (1553) switches the alphabet used on each letter, according to a secret keyword. We start with a table of shifted alphabets:

```
abcdefghijklmnopqrstuvwxyz
   abcdefghijklmnopqrstuvwxyz
  b c d e f g h i j k l m n o p q r s t u v w x y z a
b
   c d e f g h i j k l m n o p q r s t u v w x y z a b
C
   de fghijklmnopqrstuvwxyzabc
d
e
   e f g h i j k l m n o p q r s t u v w x y z a b c d
   fghijklmnopqrstuvwxyzabcde
  ghij klmnopqrstuvwxyzabcde f
  hijklmnopqrstuvwxyzabcdefg
h
   i j k l m n o p q r s t u v w x y z a b c d e f g h
i
   j k l m n o p q r s t u v w x y z a b c d e f g h i
k
  k l m n o p q r s t u v w x y z a b c d e f g h i j
1
   lmnopqrstuvwxyzabcdefghijk
  mnopqrstuvwxyzabcdefghijkl
m
  nopqrstuvwxyzabcdefghijklm
n
   opqrstuvwxyzabcdefghijklmn
  pqrstuvwxyzabcdefghijklmno
р
  qrstuvwxyzabcdefghijklmnop
q
   r s t u v w x y z a b c d e f g h i j k l m n o p q
r
   s t u v w x y z a b c d e f g h i j k l m n o p q r
   t u v w x y z a b c d e f g h i j k l m n o p q r s
   u v w x y z a b c d e f g h i j k l m n o p q r s t
u
   vwx y z a b c d e f g h i j k l m n o p q r s t u
  w x y z a b c d e f g h i j k l m n o p q r s t u v
w
   x y z a b c d e f g h i j k l m n o p q r s t u v w
\mathbf{x}
  y z a b c d e f g h i j k l m n o p q r s t u v w x
y
  zabcdefghijklmnopqrstuvwxy
```

Below is a secret message encoded with the keyword 'blimp'. Work backwards to discover the message. The result should be two actual English words.

message:								
key:	b	1	i	m	p	b	l	i
encrypted:	h	1	u	q	d	W	p	Z