
CS101 – Fundamentals of Computer and Information Sciences – LIU 1 of 5

Figure 1: @hmason on Twitter

Algorithms

It’s a little tricky to define an algorithm, but informally we can use the term inter-
changeably with more well-known English words like recipe or procedure.

Definition: an algorithm is a finite sequence of unambiguous and effectively com-
putable instructions that produce some intended result.

Let’s explore some of those terms in more detail:

finite: An algorithm must terminate at some point. If it might go on forever, then
we might never achieve the intended result.

sequence: The instructions are ordered – first do this, then do that, etc. – and the
order must be followed to achieve the correct result. (As an aside, there are
parallel algorithms, in which the instructions are only partially ordered. We’ll
ignore that distinction for now.)

unambiguous: Each instructionmust be specified precisely, so there can be no con-
fusion as to what must be done. If multiple interpretations of the instruction
are possible, it’s not an algorithm.

computable: Each instruction must specify some task that can be performed. This
gets a little theoretical, but there are some types of problems that no computer
can solve in finite time. For now, let’s just take a simple example of an uncom-
putable instruction: “predict tonight’s lottery numbers.” Because the lottery is
random, there’s no procedure we can follow to reliably predict it.

result: We develop an algorithm to produce some specific answer. It could be a
solution to amath problem, a stream of output, a modification of values stored
in the memory, or whatever.

https://twitter.com/hmason/status/379931373227618305


2 of 5 Prof. League – Spring 2018 – Algorithms

Figure 2:

Notation

An algorithm is independent of the language or notation in which it is specified. The
binary search algorithm can be written in Python or Java or Ruby, but they’re all the
same algorithm.

One notation sometimes used for algorithms is called pseudo-code (where pseudo
of course means “false” or “fake”). Unlike real code in a programming language,
pseudo-code cannot be executed directly by a computer. However, because it’s based
on English (with a little mathematical notation), it’s easier for untrained humans to
understand.

Below is an example of an algorithm, written in pseudo-code, that will compute the
factorial of a given integer, N. (The factorial is the result of multiplying all the num-
bers between 1 and N, so factorial of 4 is 1×2×3×4 = 24.)

Algorithm: factorial

1. Let N be an integer > 0.
2. Let K be 1.
3. If N = 1 then output K and stop.
4. Set K to K×N.
5. Set N to N–1.
6. Go back to step 3.

To understand this algorithm, we need to introduce the concept of a variable in pro-
gramming. We use variables in mathematics too, but they’re a little different. In
mathematics, a variable is a name given to a value, like x=5. In programming, a vari-
able is a name given to a location in memory, which in turn can hold a value. The
difference is that the value in the memory can be updated at a later time.

Let’s trace the algorithm. In step 1, we’re allowed to specify the value of N, as long
as it is bigger than zero. This is a kind of input instruction. Let’s use 4, so that the
algorithm computes the factorial of 4. In step 2, another variableK is named, but it’s
initial value is 1. Here’s what that looks like:

Step 3 asks whether N=1. It does not, so we skip the rest of that instruction.

Step 4 updates a variable. We first compute the value of the expression: K×N = 1×4
= 4, and then we write that value to the box labeled K, replacing whatever was there
before:



CS101 – Fundamentals of Computer and Information Sciences – LIU 3 of 5

Figure 3:

Figure 4:

Step 5 updates the other variable. We first compute the value of the expression: N–1
= 4–1 = 3, and then we write that result to the box labeled N, replacing whatever was
there before:

Step 6 says to go back to step 3. In step 3, N is still not 1, so we continue with the two
updates again. This time, K×N = 4×3 = 12, and N–1 = 3–1 = 2:

N is still not 1, so we go through once more, producing these values for the two
variables:

This time N=1, so in step 3 we output K and stop. By following this algorithm, we
just computed the factorial of 4:

Output: 24

By starting the same algorithm with a different value of N, we could have computed
any factorial.

Another example

Here’s an algorithm you can try tracing yourself.

Algorithm:

7. Let A,B be integers > 0.
8. If A = B then output A and stop.
9. If A < B then set B to B–A and go back to step 2.

Figure 5:



4 of 5 Prof. League – Spring 2018 – Algorithms

Figure 6:

10. Otherwise set A to A–B and go back to step 2.

I won’t tell you what this algorithm produces, but try it starting with these values for
A and B:

A: 35

B: 21

Then try these:

A: 28

B: 12

And finally these:

A: 14

B: 33

Do you see the pattern? What does the algorithm compute?

Sorting

One rich area of algorithms is sorting – putting things in some order, whether that’s
alphabetical, numerical, chronological, or by size. There are many different sorting
algorithms with different strengths and weaknesses. These videos introduce a few of
them.

See also:

• Diagram for Batcher’s ‘bitonic’ sort

Speed

Whenever we talk about the “speed” of an algorithm, we have to consider the size
of the input. In fact, we’re usually most concerned about how the size of the input
impacts the running time, as that size increases. Maybe for sorting 8 elements, there



CS101 – Fundamentals of Computer and Information Sciences – LIU 5 of 5

Figure 7:

isn’t much difference. But when we increase that to 50 or 1,000, dramatic differences
may emerge.

Below is a graph comparing the number of comparisons for selection vs. merge sort,
and also showing the lines N² and N·log₂(N), which are characterizations of these
different approaches. You can see that the selection sort is somewhat less than N²,
however, they do grow large in the same awful way.


	Notation
	Another example
	Sorting
	Speed

