Boolean logic

Contents

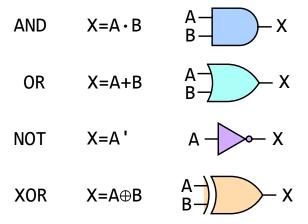
1	Boolean algebra and logic gates	1
2	Combinational circuits	2
3	Sequential circuits	2
4	Logisim software	3
5	Further exploration	4

1. Boolean algebra and logic gates

In the 1840s, English mathematician George Boole developed an algebra (a set of operators and laws) for variables that can have just two states – **true** and **false**. Thus, a Boolean value is equivalent to one bit:

False	0	off
True	1	on

The operators defined by Boole are pervasive throughout all of computing. You may have encountered them in doing library or other database searches. The ones we'll consider are:



The figure illustrates both the algebraic notation and the **circuit diagram** notation. The elements of circuit diagrams are called **gates**, as in "AND gate" or "XOR gate." The "XOR" (\oplus) operator is named for "*exclusive* OR."

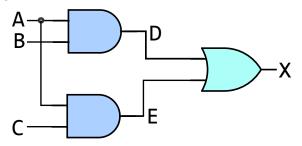
The behavior of these operators can be defined by **truth tables**:

А	В	A۰B	A+B	Α′	$A{\oplus}B$
0	0	0	0	1	0
0	1	0	1	1	1
1	0	0	1	0	1
1	1	1	1	0	0

The first two columns indicate the values of the two variables, A and B. There are four rows because two variables can take on four different values ($2^2 = 4$). If there were three variables, there would need to be $2^3 = 8$ rows.

2. Combinational circuits

We combine the gates into **combinational circuits** to achieve various effects. For example, the algebraic expression $X = A \cdot B + A \cdot C$ corresponds precisely to the following circuit diagram:



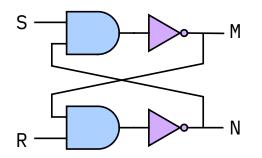
and we can discover its results by completing the truth table:

А	В	С	D=A · B	E=A·C	X=D+E
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Exercise: Try drawing the circuits and the truth tables for $X = (A \cdot B)'$ and for Y = A' + B'. They should produce the same result for all inputs A and B. This is one of **DeMorgan's Laws.**

3. Sequential circuits

We'll just look at the S-R (NAND) latch.



This is a **sequential** circuit, rather than combinational. That means it contains *cycles*. One way to make sense of a cycle is to think in terms of the values of wires *from one moment to the next*. You can subscript each variable with the time of interest: $S_t vs S_{t+1}$, etc.

	-	M[t]	N[t]	M[t+1]	N[t+1]
1	1	1	0	1	0
1	1	0	1	0	1
1	0	1	0	1	1
1	0	1	1	0	1
1	0	0	1	0	1
0	1	0	1	1	1
0	1	1	1	1	0
0	1	1	0	1	0
	R S 1 1 1 1 1 1 0	1 0 1 0 1 0 0 1	R M[t] 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	R M[t] N[t] 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

• Video: Flip Flops, Latches, & Memory¹ from Computerphile [8m53s]

4. Logisim software

This section refers to a program called Logisim², which should run on any platform with a Java Runtime Environment.

www.cburch.c om/logisim/d ownload.html

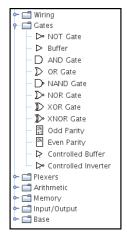
Figure 1: On a Mac, if you see the "unidentified developer" error, go **into System Preferences** » **Security** and look for the button that says **Open Anyway.**

Once you open Logisim, there are a few tools you should familiarize yourself with. The **hand tool** (leftmost on the toolbar) allows you to *turn inputs on and off.* The **arrow**

tool (next to it) allows you to place components onto the grid, move them around, and wire them together.

File	Edit	Project	Sir	nula	te	Window
		1 🖻	0	⊳	D	\triangleright
B 🕫	00	1				

In the side-bar, the main components we'll be using are in the **Gates** section, but there's also the **Pin** (under Wiring) and the **LED** (under Input/Output).



When you have a component selected, its properties appear in the lower left of the screen. You can use these to create a label for your pins and LEDs.

Selection: LED				
Facing	North			
On Color	#f00000			
Off Color	#404040			
Active On High?	Yes			
Label	Carry			
Label Location	East			
Label Font	SansSerif Plain 12			
Label Color	#000000			

³youtu.be/ATP gpFMlVdw

⁴youtu.be/lNu Py-r1GuQ

ÿyoutu.be/OpL U__bhu2w

Here is the 3-bit adder circuit I did in class. If that file doesn't open automatically in Logisim, you can start Logisim *first* and then use **File** » **Open**.

• Video: Logisim tutorial³ from ENGRTUTOR [7m47s]

5. Further exploration

- Video: Building a half-adder using dominoes⁴, with Matt Parker on Numberphile [18m30s]
- Video: The big domino adder⁵, demonstrated at the Manchester Science Festival, UK [22m26s]

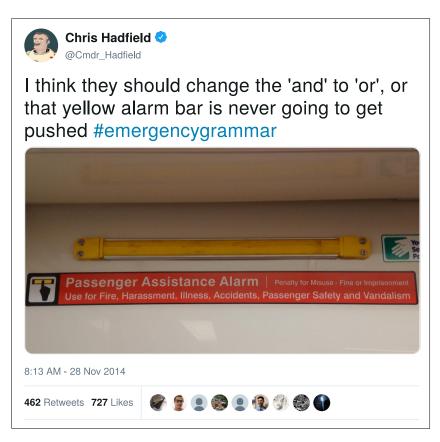


Figure 2: @Cmdr_Hadfield on Twitter