Number systems and binary ## **Practice problems** Solutions are available online¹ | 1. | Convert the base ten (decimal) number 83 into the following bases: | |----|--| | | • base 4 : | - base 6 : _____ - base 7 : _____ - 232 ₄ = _____ - 414 ₅ = _____ - 205 ₆ = _____ - 164 ₇ = _____ | 3. Convert the following base ten (decimal) numbers into | binary. | |--|---------| |--|---------| - 6 = _____ - 18 = _____ - 51 = _____ - 63 = ____ 4. Convert the following unsigned binary numbers into base ten. - 1010 = ____ - 1101 = _____ - 1000 = _____ - 10001 = _____ - 5. What do all **odd** numbers have in common, when written in binary? (Hint: try writing the quantities 3, 5, 7, 9 in binary.) 1https: //liucs.net/ cs101s19/num bers-practic e-sol.pdf | 6. | Using 7-bit signed two's complement binary numbers, what is | the largest | |----|---|-------------| | | positive number? What is the most negative number? | | 7. Convert the following 5-bit **signed two's complement** binary numbers into base ten. ``` • 01101 = _____ ``` 8. Convert the following 16-bit binary number into octal and hexadecimal. 9. Convert the following **hexadecimal** numbers into binary: 10. Convert the following **octal** numbers into binary: 11. Add and verify the following **unsigned** binary numbers.