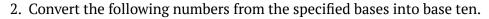
Number systems and binary


Practice problems

Solutions are available online¹

1.	Convert the base ten (decimal) number 83 into the following bases:
	• base 4 :

- base 6 : _____
- base 7 : _____

- 232 ₄ = _____
- 414 ₅ = _____
- 205 ₆ = _____
- 164 ₇ = _____

3. Convert the following base ten (decimal) numbers into	binary.
--	---------

- 6 = _____
- 18 = _____
- 51 = _____
- 63 = ____

4. Convert the following unsigned binary numbers into base ten.

- 1010 = ____
- 1101 = _____
- 1000 = _____
- 10001 = _____
- 5. What do all **odd** numbers have in common, when written in binary? (Hint: try writing the quantities 3, 5, 7, 9 in binary.)

1https:
//liucs.net/
cs101s19/num
bers-practic
e-sol.pdf

6.	Using 7-bit signed two's complement binary numbers, what is	the largest
	positive number? What is the most negative number?	

7. Convert the following 5-bit **signed two's complement** binary numbers into base ten.

```
• 01101 = _____
```

8. Convert the following 16-bit binary number into octal and hexadecimal.

9. Convert the following **hexadecimal** numbers into binary:

10. Convert the following **octal** numbers into binary:

11. Add and verify the following **unsigned** binary numbers.