
CS101 Fundamentals of Computer and Information Sciences – LIU 1 of 12

2019-05-06 22:53
1a0f14a

Number systems and binary

Contents

1 Positional numbering system 1

2 Binary numbers 4

3 Binary arithmetic 5

4 Fixed-size binary numbers 5

5 Signed magnitude 6

6 Two’s complement 7

7 Octal and hexadecimal 8

8 Practice problems 9

9 Extra: ˌoating-point 11

In the ˋrst unit of this course, we look at binary numbers and binary representations
of other sorts of data.

1. Positional numbering system
Our normal number system is a positional system, where the position (column) of
a digit represents its value. Starting from the right, we have the ones column, tens
column, hundreds, thousands, and so on. Thus the number 3724 stands for three
THOUSAND, seven HUNDRED, two TENS (called twenty), and four ONES.

10⁰10² 10¹10³

hundreds

on
es

thousands

tens

3 7 2 4

The values of those columns derive from the powers of ten, which is then called the
base of the number system. The base ten number system is also called decimal.



2 of 12 Prof. League – Spring 2019 – Number systems and binary

1youtu.be/l4b
mZ1gRqCc

2youtu.be/U6x
JfP7-HCc

3youtu.be/goc
wRvLhDf8

There is nothing special about base ten, except that it’s what you learned from a young
age. A positional numbering system can use any quantity as its base. Let’s take, for
example, base ˋve. In base ˋve, the columns represent the quantities (from right to
left) one, ˋve, twenty-ˋve, and a hundred twenty-ˋve. We need to use ˋve symbols to
indicate quantities from zero up to four. For simplicity, let’s keep the same numerals
we know: 0, 1, 2, 3, and 4.

5⁰5² 5¹5³

tw
enty-fives

on
es

hundred tw
enty-fives

fives

3 1 0 4

The number shown in this ˋgure (3104) represents the same quantity that we usually
write as 404 in base ten. That’s because it is three “hundred twenty-ˋves” (= 375), plus
one “twenty-ˋve” (= 25) plus four ones (= 4), so 375 + 25 + 4 = 404.

You can count directly in base ˋve; it looks like this: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20,
21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 100. (Those correspond to quantities
from zero to twenty-ˋve.)

Here is an algorithm for converting from base ten to any foreign base. Suppose we have
the number 344 (three hundred forty-four) that we’d like to write in base ˋve.

We start by dividing the number by the desired base, so 344 ÷ 5 = 68.8. It helps to think
of that as 68 with a remainder of 4. (The .8 corresponds to a remainder of 4 because
.8 × 5 = 4.) Remember the remainder, but proceed with the whole-number part. So now
we divide 68 ÷ 5 = 13.6 which is remainder 3. Next, 13 ÷ 5 = 2.6, again remainder 3.
Finally, 2 ÷ 5 = 0.4, which is remainder 2.

We stop when the whole-number part becomes zero, and then write the remainders
from right to left: 2334. Thus, 344 in base ten is written as “2334” in base 5.

Further exploration

• Video: on linguistics and numbering systems1 by Tom Scott on Numberphile
[9m54s]

• Video: learn about base twelve2 with James Grime on Numberphile [9m11s]

• Video: there are much larger bases used every day – check out this explanation
of Base 643 by Tom Scott [5m10s]

https://youtu.be/l4bmZ1gRqCc
https://youtu.be/U6xJfP7-HCc
https://youtu.be/gocwRvLhDf8
https://youtu.be/gocwRvLhDf8


CS101 Fundamentals of Computer and Information Sciences – LIU 3 of 12

Figure 1: @wirehead2501 on Twitter

Figure 2: Teaching math was way more fun after tenure— from Saturday Morning Breakfast
Cereal

https://twitter.com/wirehead2501/status/517927971181432832
http://smbc-comics.com/index.php?id=2874
http://smbc-comics.com/index.php?id=2874


4 of 12 Prof. League – Spring 2019 – Number systems and binary

4youtu.be/Lpu
Pe81bc2w

2. Binary numbers
Computer systems use binary numbers – that just means they are expressed in base
two. Using two as the base is really convenient and ˌexible, because we need only
two symbols and there are so many ways we can represent them: zero/one, on/off,
up/down, high/low, positive/negative, etc.

In binary, the columns are (from right to left) 1, 2, 4, 8, 16, 32, and so on. Using a zero
means we exclude that column’s quantity, and a one means we include it.

2⁰2² 2¹2³

0 1 1 0

2⁴
8 4 2 116

1

So the binary number 10110 is the quantity 16 + 4 + 2 = 22. Each binary digit (a one or
a zero) is called a bit. The largest ˋve-bit binary number, then is 11111 = 16 + 8 + 4 + 2
+ 1 = 31.

It’s worthwhile to learn to count in binary, at least from zero to ˋfteen:

0000 = 0 0100 = 4 1000 = 8 1100 = 12
0001 = 1 0101 = 5 1001 = 9 1101 = 13
0010 = 2 0110 = 6 1010 = 10 1110 = 14
0011 = 3 0111 = 7 1011 = 11 1111 = 15

The repeated division algorithm we learned in the positional numbering section also
works for binary, but there’s an even simpler way it can be adapted, by thinking in
terms of even and odd numbers.

Let’s convert the number 46 to binary. We begin by noticing that it is even, so we write
a zero. Then we divide the number in half to get 23. That number is odd, so we write a
one. Then we divide it in half (discarding the .5 remainder) to get 11. That’s odd, so
we write a one, and so on.

46 even 0
23 odd 1
11 odd 1
5 odd 1
2 even 0
1 odd 1

The algorithm ends when we get down to 1, and then we read the binary number from
bottom to top: 101110 is the binary representation of the quantity 46.

Further exploration

• Video: Binary Numbers and Base Systems as Fast as Possible4 by Techquickie
[5m19s]

https://youtu.be/LpuPe81bc2w


CS101 Fundamentals of Computer and Information Sciences – LIU 5 of 12

3. Binary arithmetic
It’s relatively easy to add numbers directly in binary. Line up the columns and then
proceed from right to left, as usual. There are only four possible cases:

• If a column has no ones, write a zero below.

• If a column has one one, write a one below.

• If a column has two ones, write a zero and carry a one to the next column (to the
left).

• Finally, if a column has three ones (possible due to an incoming carry), write a
one and carry a one to the next column.

Below is an example of adding 10110 plus 11100. The result is 110010, and you can see
the carry bits above the original numbers, in orange.

10110
11100

=22
=28

110010

111

1416 2832
=50

When adding this way, it’s always a good idea to check your work by converting the
numbers to decimal and checking the addition. In this case, we’re adding 22 (10110)
to 28 (11100) to get 50 (110010).

4. Fixed-size binary numbers
We generally arrange numbers along a line that continues into inˋnity in both
directions. In binary we can always continue counting by adding more and more
columns that are powers of two.

However, in most computer systems and programs we use ˋxed-size numbers. That
is, we decide in advance how many bits will be used to represent the number. For
example, a 32-bit computer represents most of its numbers and addresses using 32
bits. The largest such number is 232 − 1 = 4,294,967,295. Many computers now use 64
bits. The largest 64-bit number is 264 − 1 = 18,446,744,073,709,551,615.

When your numbers have a ˋxed size, then there is no number line heading off into
inˋnity. Instead, we arrange the numbers around a circle, like a clock. Below is the
number wheel for 3-bit integers. The smallest 3-bit integer is zero, and the largest is
seven. Then, if you attempt to keep counting, it just wraps around to zero again.



6 of 12 Prof. League – Spring 2019 – Number systems and binary

5youtu.be/WN8
i5cwjkSE

6youtu.be/umY
vFdU54Po

0
1

2

3

4
5

6

7

When you perform arithmetic with ˋxed-size numbers, you throw away any extra carry
bit; the result cannot exceed the designated size. For example, see what happens if we
try to add 110 + 011 using 3-bit integers:

discard
extra carry

In 3-bit arithmetic, 6 plus 3 is 1. You can make sense of this on the number wheel.
Addition corresponds to walking clock-wise around the wheel. So start at 6, and go
clockwise by 3. That lands on 1, which is 6+3.

Further exploration

• Video: Binary addition and overˌow5 with Prof. Brailsford on Computerphile
[6m59s]

• Video: Fixed-size binary numbers in old video games6 with James Clewett on
Numberphile [5m23s]

5. Signed magnitude
Now we’ll look at signed numbers – that is, numbers that can be positive or negative.
There are two techniques for encoding signed numbers. The ˋrst one is called signed
magnitude. It appears simple at ˋrst, but that simplicity hides some awkward
properties.

Here’s how it works. We use a ˋxed width, and then the left-most bit represents the
sign. So 4-bit signed magnitude looks like this:

———— ———— ———— ————
sign 4 2 1

where having the sign bit set to 1 means the magnitude is interpreted as negative.
Thus, 0110 is +6 whereas 1110 is -6. In this system, the largest positive number is
0111 = +7 and the most negative number is 1111 = -7.

https://youtu.be/WN8i5cwjkSE
https://youtu.be/umYvFdU54Po


CS101 Fundamentals of Computer and Information Sciences – LIU 7 of 12

One of the unfortunate effects of this representation is there are two ways to write zero:
0000 and also 1000. There is no such thing as negative zero, so this doesn’t really
make sense.

6. Two’s complement
The second way to represent signed quantities is called two’s complement. Although
this looks trickier at ˋrst, it actually works really well. Below is the interpretation of
4-bit two’s complement. All we need to do compared to normal unsigned numbers is
negate the value of the left-most bit.

1 0 1 0 = -6
———— ———— ———— ————
-8 4 2 1

So +6 is 0110 as before, but what about -6? We need to turn on the negative 8, and
then add two: 1010. To represent -1, you turn on all the bits: 1111, because that
produces -8+4+2+1 = -8+7 = -1.

The nice thing about two’s complement is that you can add these numbers and
everything just works out. Let’s try adding 7 and -3:

0 1 1 1 = 7
1 1 0 1 = -3
————————— ————
0 1 0 0 = 4

It’s also relatively easy to negate a number – that is, to go from +6 to -6 or from -3 to
+3. Here are the steps:

1. First, ˌip all the bits. That is, all the zeroes become ones and all the ones become
zeroes.

2. Next, add one.

For example here is how we produce -6 from +6:

0 1 1 0 = +6
—————————
1 0 0 1 (flip all the bits)

+ 1 (add one)
—————————
1 0 1 0 = -6

You don’t even have to reverse these steps in order to convert back:

1 0 1 0 = -6
—————————
0 1 0 1 (flip all the bits)



8 of 12 Prof. League – Spring 2019 – Number systems and binary

xkcd.com/571
/

+ 1 (add one)
—————————
0 1 1 0 = +6

Figure 3: “Can’t Sleep” from XKCD. How many bits is this person using?

7. Octal and hexadecimal
Finally, I want to introduce two number systems that are very useful as abbreviations
for binary. They work so well because their bases are powers of two.

Octal is base eight, so we use the symbols 0–7 and the values of the columns are:

——— ——— ——— ———
512 64 8 1
8³ 8² 8¹ 8⁰

The real advantage of octal, however, is that each octal digit maps to exactly three
binary digits. So, an octal number like 3714maps as shown:

3 7 1 4 octal number
——————— ——————— ——————— ———————
0 1 1 1 1 1 0 0 1 1 0 0 binary number
(4 2 1) (4 2 1) (4 2 1) (4 2 1)

Both of those numbers are equal to 1996 in base ten, but it’s more difˋcult to convert
to base ten than between octal and binary.

Hexadecimal is base sixteen, so we use the symbols 0–9 and then A to represent ten,
B for eleven, C for twelve, and so on up to F for ˋfteen. The values of the columns are:

———— ———— ———— ————
4096 256 16 1
16³ 16² 16¹ 16⁰

So a hexadecimal number like 2A5C has the value 2×4096 + 10×256 + 5×16 +
12×1 = 10844 in base ten.

http://xkcd.com/571/


CS101 Fundamentals of Computer and Information Sciences – LIU 9 of 12

Figure 4: The DEC PDP-8 (1970) was programmed partly using octal, so its switches and lights
were grouped into threes. [Photo: dustyoldcomputers.com]

7youtu.be/9xb
J3enqLnA

8youtu.be/jFn
XpMt6H_Y

9https:
//liucs.net/
cs101s19/num
bers-practic
e-sol.pdf

In hexadecimal, each digit maps to exactly four bits. So here is that same number
in binary:

2 A 5 C
————————— ————————— ————————— —————————
0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0
(8 4 2 1) (8 4 2 1) (8 4 2 1) (8 4 2 1)

Further exploration

Below are two great video explanations of hexadecimal. (Note when you watch these
– the British presenters pronounce zero as “naught.”)

• Video: Hexadecimal7 with James Clewett on Numberphile [7m57s]

• Video: Binary/hexadecimal conversion8 with Peter Edwards [3m10s]

8. Practice problems
Solutions are available online9

1. Convert the base ten (decimal) number 83 into the following bases:

• base 4 :

• base 5 :

• base 6 :

• base 7 :

2. Convert the following numbers from the speciˋed bases into base ten.

• 232 4 =

http://dustyoldcomputers.com/
https://youtu.be/9xbJ3enqLnA
https://youtu.be/jFnXpMt6H_Y
https://liucs.net/cs101s19/numbers-practice-sol.pdf


10 of 12 Prof. League – Spring 2019 – Number systems and binary

• 414 5 =

• 205 6 =

• 164 7 =

3. Convert the following base ten (decimal) numbers into binary.

•   6  = 

•  18  = 

•  51  = 

•  63  = 

4. Convert the following unsigned binary numbers into base ten.

•   1010  = 

•   1101  = 

•   1000  = 

•  10001  = 

5. What do all odd numbers have in common, when written in binary? (Hint: try
writing the quantities 3, 5, 7, 9 in binary.)

6. Using 7-bit signed two’s complement binary numbers, what is the largest
positive number? What is themost negative number?

7. Convert the following 5-bit signed two’s complement binary numbers into base
ten.

• 01101  = 

• 01111  = 

• 10011  = 

• 11111  = 



CS101 Fundamentals of Computer and Information Sciences – LIU 11 of 12

10youtu.be/PZR
I1IfStY0

8. Convert the following 16-bit binary number into octal and hexadecimal.

0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0

9. Convert the following hexadecimal numbers into binary:

•   9D  = 

•   C4  = 

•  D05  = 

• A17E  = 

10. Convert the following octal numbers into binary:

•   37  = 

•  415  = 

•  620  = 

11. Add and verify the following unsigned binary numbers.

1 0 1 1 1 1
+ 1 1 1 0 1
——————————————

9. Extra: ˌoating-point
• Video: Floating Point Numbers10 with Tom Scott on Computerphile [9m15s]

https://youtu.be/PZRI1IfStY0


12 of 12 Prof. League – Spring 2019 – Number systems and binary

Figure 5: jaffathecake on Twitter

Figure 6: CAPTCHA for the Secret Robot Internet — from Saturday Morning Breakfast Cereal

https://twitter.com/jaffathecake/status/438231637931745280/
http://www.smbc-comics.com/?id=2999

	Positional numbering system
	Binary numbers
	Binary arithmetic
	Fixed-size binary numbers
	Signed magnitude
	Two's complement
	Octal and hexadecimal
	Practice problems
	Extra: floating-point

