
CS101 Fundamentals of Computer and Information Sciences – LIU 1 of 4

2019-05-06 22:53
1a0f14a

Other programming languages

Arithmetic notation
One very concrete way in which some languages differ is how arithmetic expressions
are written. The normal way we write expressions, such as a+b is called “inˋx” because
the operator (+) is in between the operands (a and b). But there are alternatives,
called preˋx and postˋx. Collectively, they are also called “Polish notation” (forward
Polish for preˋx, or reverse polish (RPN) for postˋx).

Preˋx expressions

The LISP language family (which includes Scheme, Racket, Clojure, and others) use
preˋx notation, so the operator comes before the operands. They also surround every
sub-expression with parentheses, as in this example:

(/ 36 (* (+ 1 5) 4))

You evaluate preˋx expressions starting from the innermost parentheses, like this:

(/ 36 (* (+ 1 5) 4))

(/ 36 (* 6 4))

(/ 36 24)

1.5
One interesting advantage of preˋx is that operators can have any number of operands:

(+ 3 7 10)
→ 20



2 of 4 Prof. League – Spring 2019 – Other programming languages

Postˋx expressions

A few languages use postˋx notation. No parentheses are needed at all, you just
specify the numbers (separated by spaces) and the operators. So the same calculation
performed in the previous section would look like this:

36 1 5 + 4 * /

To evaluate this, you just work from left to right. When you encounter an operator,
grab the two previous items to use as operands. Replace all three with the resulting
value.

36 1 5 + 4 * /

36 6 4 * /

36 24 /

1.5



CS101 Fundamentals of Computer and Information Sciences – LIU 3 of 4

1youtu.be/jos
1Flt21is

2youtu.be/7ha
78yWRDlE

Postˋx evaluation is computationally very simple – it is especially suitable for devices
with severe memory constraints. It was popular for 1970s calculators, and printers
even today. The core of the Portable Document Format (PDF) is a language called
Postscript, which is based entirely around postˋx evaluation.

Converting between notations

When converting an inˋx expression to preˋx or postˋx, it’s helpful to draw a tree
representing the expression. You do this by joining the operands of each operator, in
the order you would apply them (according to the standard order of operations). Here
is a tree for the expression 180 − 6 × (2 + 7) × 3:

To convert it to preˋx, each node (starting from the root) corresponds to a set of
parentheses, and then you convert the left node and the right node after writing the
operator:

(- 180 (* (* 6 (+ 2 7)) 3))

To convert to preˋx, you start from the root, but for each node you complete the left
and right sub-trees before writing the operator in that node:

180 6 2 7 + * 3 * -

Here are some videos that further explain the differences between inˋx, preˋx, and
postˋx.

• Inˋx, preˋx, postˋx1 (mycodeschool, 13 min)

• Postˋx and stacks2 (Computerphile, 13 min)

https://youtu.be/jos1Flt21is
https://youtu.be/7ha78yWRDlE


4 of 4 Prof. League – Spring 2019 – Other programming languages

3youtu.be/Trf
cJCulsF4

• RPN on trees3 (Computerphile, 10 min)

https://youtu.be/TrfcJCulsF4

