
CS101 Fundamentals of Computer and Information Sciences – LIU 1 of 11

2019-05-06 22:53
1a0f14a

Text encoding

Contents

1 Beginnings 1

2 Fixed vs variable-width 2

3 ASCII 7

4 Babel 8

5 Unicode 9

We have covered how to represent numbers in binary; in this section we’ll explore
representations of text as bits. By “text,” wemean alphabets and other writing systems
— used everywhere from status updates and text messages to email and digital books.

1. Beginnings

Figure 1: pigworker on Twitter

To begin, we can propose a way of mapping letters and other characters (punctuation,
space, etc.) to numbers. For example, let A be represented as the number 0, B as 1, C
as 2, and so on. There are 26 letters in the English alphabet, so Z is 25, and we’d need
a total of 5 bits. (25 = 32, so we’d even have a few numbers left over for punctuation.)

Exercise: using the scheme outlined above, decode the word represented by the bits
00010 00000 10011

https://twitter.com/pigworker/status/344966015601500160

2 of 11 Prof. League – Spring 2019 – Text encoding

1en.wikipedia
.org/wiki/Br
aille

If our text messages need to distinguish between upper- and lower-case letters, we’ll
need more than 5 bits. Upper-case A–Z is 26 characters, lower-case a–z is another 26,
so that’s a total of 52. 26 = 64, so 6 bits would cover it and again have a few available
for punctuation.

But what about including numbers in our text? If we want to send the text message
“amazon has a 20% discount on textbooks,” we can’t really represent that “20” as
10100 in binary, because that would conˌict with the representation of the letter U.

Instead, we need to add space for the standard ten numerals as characters. Including
those with upper- and lower-case letters means we need at least 62 characters.
Technically that ˋts in 6 bits, but we’d have very little room for punctuation and
the character representing a space. So for practical purposes, we’re up to 7 bits per
character. 27 = 128, so now there is a good deal of room for other symbols.

As an aside, there could be a way to “reuse” alphabetic representations as numerals.
We’d just have to precede them with a marker that means “this is a number,” or else
require the recipient to guess from context. This is the situation in Braille1 — a writing
system for people with visual impairments — that is based on 6-bit characters. (Each
of six locations can be raised or not.) The Braille character for A is the same as the
number 1.

2. Fixed vs variable-width
The simple encodings I proposed in the previous section are based on a ˋxed number
of bits per character — whether it is 5, 6, or 7. One way to illustrate that is as a tree—
see ˋgure 2.

Trees are a commonly-used data structure in computer science, but they are a little
different than the organic trees to which they refer. First of all, we usually draw trees
with the root at the top, and they grow down the page. Each time a circle splits into
two paths, we call that a branch. The tree ends at the bottom with a row of leaves.

This particular tree is a binary tree, meaning that every node is either a leaf, or a
branch with exactly two children. The nice thing about a binary tree is that paths from
root to leaf correspond exactly to binary numbers. Just think of zero as going left in
the tree, and one as going right. Then, the number 01101 (for example) corresponds
to left-right-right-left-right, which lands on the leaf marked N.

Exercise: decode these text messages using the tree in ˋgure 2.

1. 100001111100000

2. 00101101000110111110

3. 001100000001100001001101001110101010010010001

You can tell the previous tree is ˋxed-width because every path from root to leaf is
exactly 5 transitions. Now compare that to a variable-bit tree, in this ˋle:

http://en.wikipedia.org/wiki/Braille

CS101 Fundamentals of Computer and Information Sciences – LIU 3 of 11

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

_
.

,
?

!
&

0
1

Fi
gu

re
2:

Fi
ve
-b
it
en

co
di
ng

of
32

ch
ar
ac
te
rs

4 of 11 Prof. League – Spring 2019 – Text encoding

R H

E

S

C

P Y

N I O

V ? ! &

,

_

. L

A

G F

D

T

W M

Z Q X J

K

B

U

0 1

Figure 3: Variable-width Huffman encoding, based on character frequencies

CS101 Fundamentals of Computer and Information Sciences – LIU 5 of 11

2youtu.be/Jaf
QYA7vV6s

In this case, different letters can have very different numbers of bits representing
them. For example, E is the shortest path, representing just 3 bits. X is a very long
path, representing 10 bits.

Unlike with the ˋxed-width encoding, it can be tricky to tell where one letter ends and
the next letter begins. You simply follow the path in the tree until you land on a leaf.
Then, start again at the root for the next bit.

Exercise: decode these text messages using the Huffman tree in ˋgure 3.

1. 00100100000111001

2. 111101111111111011001110001

3. 11010011001111010011010100010010000010000

This particular variable-width tree is crafted so that the overall effect is that it
compresses English text. This works because more commonly used letters are
represented with proportionally shorter bit strings. For example, let’s compare the
encodings using both trees of a sequence of words:

word: fixed encoding: variable encoding:
THE 100110011100100 15 bits 11100001001 11 bits
GRASS 001101000100000 11010000001100

1001010010 25 bits 01000100 22 bits
IS 0100010010 10 bits 01110100 8 bits
GREEN 001101000100100 1101000000001

0010001101 25 bits 0010110 20 bits
SAID 100100000001000 010011000111

00011 20 bits 11011 17 bits
QUUX 100001010010100 1111100001

10111 20 bits 111111111111
1111100010 32 bits

total: 115 bits 110 bits

With the ˋxed encoding, every character is exactly 5 bits, and so the whole sequence
of words is 115 bits. (We’re not counting encoding the spaces between words for this
exercise.)

Contrast that with the variable encoding. Nearly every word has a shorter
representation. The one exception is “QUUX,” which of course isn’t really a word in
English. But it represents the case of a word with infrequently-used letters, and the
encoding of that one word increased substantially in size from 20 to 32 bits. On the
whole, the second tree still compresses as long as you are mostly using English words
with high-frequency letters.

• Video: 5-Hole Paper Tape2 with Professor Brailsford on Computerphile [9m45s]

https://youtu.be/JafQYA7vV6s

6 of 11 Prof. League – Spring 2019 – Text encoding

Figure 4: mathemaniac on Twitter

https://twitter.com/mathemaniac/status/554205168149884928

CS101 Fundamentals of Computer and Information Sciences – LIU 7 of 11

3. ASCII
This brings us to the most popular and inˌuential of the ˋxed-width codes. It’s
called ASCII (pronounced “ass-key”), which stands for American Standard Code for
Information Interchange. It was developed in the early 1960s, and includes a 7-bit
mapping of upper- and lower-case letters, numerals, a variety of symbols, and “control
characters.” Table 1 shows all of them.

Table 1: ASCII Table with decimal and hexadecimal numbers
Dec, Hex Char Dec, Hex Char Dec, Hex Char Dec, Hex Char

0, 00 NUL null 32, 20 SPC 64, 40 @ 96, 60 ‘
1, 01 SOH start heading 33, 21 ! 65, 41 A 97, 61 a
2, 02 STX start text 34, 22 ” 66, 42 B 98, 62 b
3, 03 ETX end text 35, 23 # 67, 43 C 99, 63 c
4, 04 EOT end trans 36, 24 $ 68, 44 D 100, 64 d
5, 05 ENQ enquiry 37, 25 % 69, 45 E 101, 65 e
6, 06 ACK acknowledge 38, 26 & 70, 46 F 102, 66 f
7, 07 BEL bell 39, 27 ’ 71, 47 G 103, 67 g
8, 08 BS backspace 40, 28 (72, 48 H 104, 68 h
9, 09 HT horiz tab 41, 29) 73, 49 I 105, 69 i

10, 0A LF new line 42, 2A * 74, 4A J 106, 6A j
11, 0B VT vertical tab 43, 2B + 75, 4B K 107, 6B k
12, 0C FF form feed 44, 2C , 76, 4C L 108, 6C l
13, 0D CR carriage ret 45, 2D - 77, 4D M 109, 6D m
14, 0E SO shift out 46, 2E . 78, 4E N 110, 6E n
15, 0F SI shift in 47, 2F / 79, 4F O 111, 6F o
16, 10 DLE data link esc 48, 30 0 80, 50 P 112, 70 p
17, 11 DC1 device ctrl 1 49, 31 1 81, 51 Q 113, 71 q
18, 12 DC2 device ctrl 2 50, 32 2 82, 52 R 114, 72 r
19, 13 DC3 device ctrl 3 51, 33 3 83, 53 S 115, 73 s
20, 14 DC4 device ctrl 4 52, 34 4 84, 54 T 116, 74 t
21, 15 NAK negative ack 53, 35 5 85, 55 U 117, 75 u
22, 16 SYN synch idle 54, 36 6 86, 56 V 118, 76 v
23, 17 ETB end trans blk 55, 37 7 87, 57 W 119, 77 w
24, 18 CAN cancel 56, 38 8 88, 58 X 120, 78 x
25, 19 EM end medium 57, 39 9 89, 59 Y 121, 79 y
26, 1A SUB substitute 58, 3A : 90, 5A Z 122, 7A z
27, 1B ESC escape 59, 3B ; 91, 5B [123, 7B {
28, 1C FS ˋle sep 60, 3C < 92, 5C \ 124, 7C ∣
29, 1D GS group sep 61, 3D = 93, 5D] 125, 7D }
30, 1E RS record sep 62, 3E > 94, 5E ^ 126, 7E ~
31, 1F US unit sep 63, 3F ? 95, 5F _ 127, 7F DEL

The control characters are in the range 0–31 (base ten). They don’t have a visual
representation, but instead direct the display device in particular ways. Many of them
are now obsolete, but perhaps the most important one is 1010 = 0A16 = 00010102,
which is the “new line” character. Whenever you press enter to go to the next line, this
character is inserted in your document.

8 of 11 Prof. League – Spring 2019 – Text encoding

3en.wikipedia
.org/wiki/IS
O/IEC_8859

The character 32 is a space, and 33-63 hold mostly punctuation. The numerals are
at positions 48 through 57. These are easy to recognize in binary: they all start with
011 and then the lower four bits match the numeral. So you can tell at a glance that
01101012 = 3516 is the numeral 5.

The range 64–95 is mostly uppercase characters, and 96–127 is mostly lowercase.
(Both ranges include a few more punctuation characters and brackets.) These numbers
correspond to bit strings starting with 10 for uppercase and 11 for lowercase. The
remaining 5 bits give the position of the letter in the alphabet. So 10010112 = 4B16 is
the eleventh letter (uppercase K) and 11010112 = 6B16 is the corresponding lowercase
k.

4. Babel
ASCII worked relatively well for the English-speaking world, but other nations and
cultures have needs for different symbols, accents, alphabets, and other characters.
It’s impossible to write niño or café in ASCII, or the Polish name Michał, and it’s
hopeless for complete different alphabets, syllabaries, or logograms.

Computer architectures eventually settled on eight bits as the smallest addressable
chunk of memory, known as a byte. Since ASCII was 7 bits, it became possible to use
that eighth bit to indicate an extra 128 characters.

This led to a wide variety of incompatible 8-bit encodings for various languages. They
mostly agreed in being compatible with ASCII for the ˋrst 128 characters, but beyond
that it was chaos. Much of it is described in the ISO 8859 speciˋcation3.

That is, ISO 8859-1 was for Western European languages, 8859-2 for Central European,
8859-4 for North European, 8859-5 for Cyrillic alphabet, 8859-7 for Greek, etc. Sending
documents between these language groups was difˋcult, and it was impossible to
create a single document containing multiple languages from incompatible encodings.

As one small example, let’s take the character at position EC16 = 23610. All these
encodings disagree about what character it should be:

Encoding standard Char Unicode descriptor
ISO 8859-1 (Western European) ì LATIN SMALL LETTER I WITH GRAVE
ISO 8859-2 (Central European) ě LATIN SMALL LETTER E WITH CARON
ISO 8859-4 (North European) ė LATIN SMALL LETTER E WITH DOT ABOVE
ISO 8859-5 (Cyrillic) ь CYRILLIC SMALL LETTER SOFT SIGN
ISO 8859-7 (Greek) µ GREEK SMALL LETTER MU
Mac OS Roman Ï LATIN CAPITAL LETTER I WITH DIAERESIS
IBM PC ∞ INFINITY

You can still see the remnants of this old incompatible encoding system in your
browser’s menu. Most web pages today will be in Unicode — we’ll get to that in a
moment — but the browser still supports these mostly-obsolete encodings, so it can

https://en.wikipedia.org/wiki/ISO/IEC_8859

CS101 Fundamentals of Computer and Information Sciences – LIU 9 of 11

4www.unicode.
org/charts/

show you web pages written using them. Notice that even for the same language, there
are often several choices of encodings available.

Figure 5: Text encodings menu in Google Chrome

5. Unicode
To deal with this problem of incompatible encodings across different language groups,
the Unicode Consortium was founded with the amazing and noble goal of developing
one encoding that would contain every character and symbol used in every language
on the planet.

You can get a sense of the variety and scope of this goal by browsing the code charts
on the Unicode web site4. Each one is a PDF ˋle that pertains to a particular region,
language, or symbol system. In total, it’s close to a hundred thousand characters.

http://www.unicode.org/charts/
http://www.unicode.org/charts/

10 of 11 Prof. League – Spring 2019 – Text encoding

5youtu.be/Mij
meoH9LT4

The code charts give a distinct number to every possible character, but there is still
the issue of how to encode those numbers as bits. Most of the numbers ˋt in 16 bits,
which is why they are expressed as four hexadecimal digits in the code charts (such as
1F30 for an accented Greek iota: �). But 216 = 65,536 and we said there were closer to
100,000 characters, so 16 bits is not enough. Most of the time Unicode is represented
as a multi-byte (variable) encoding called UTF-8. The original ASCII characters are
still represented as just one byte, but setting the eighth bit enables a clever mechanism
that indicates how many bytes follow. Here is a great video explaining Unicode and
UTF-85 by Tom Scott on Computerphile [9m36s].

Nowadays, Unicode works just about everywhere, and almost all new content uses it.
There is still an occasional problem of whether or not your computer has the correct
fonts installed that contain all the characters you need. Sometimes you will see a box
show up in place of an unsupported character. The ˋgures show same text displayed
on three different systems.

Figure 6: Every character appears perfectly.

Figure 7: Missing a few characters, denoted by empty boxes.

https://youtu.be/MijmeoH9LT4
https://youtu.be/MijmeoH9LT4

CS101 Fundamentals of Computer and Information Sciences – LIU 11 of 11

Figure 8: Unable to display any characters except those in ASCII.

Figure 9: rob_pike on Twitter

https://twitter.com/rob_pike/status/536754241939853312/photo/1

	Beginnings
	Fixed vs variable-width
	ASCII
	Babel
	Unicode

