
CS102 – Programming 1 – LIU 1 of 6

Project 10
due at midnight on Wed 10 Dec (60 points)

For this project, we will implement a simplified form of the dice game called Yahtzee.
It works a bit like Poker – you roll five dice, and then you can discard and re-roll some
of them. You try to build ‘hands’ like five of a kind, full house, two pair, etc.

Below are transcripts of a few games usingmy solution, and below that is a skeleton of
a solution. You just need to fill in the function definitions. Read the documentation
in that given code carefully, and have fun playing your game!

Game one

WELCOME TO Yahtzee!

Dice:

(a) 2

(b) 4

(c) 1

(d) 3

(e) 5

Nothing!

Which to roll again? abc

Dice:

(a) 2

(b) 4

(c) 6

(d) 3

(e) 5

Nothing!

Which to roll again? abcde

Dice:

(a) 2

(b) 2

(c) 4

(d) 1

(e) 1

Two pair.

GAME OVER

Game two

WELCOME TO Yahtzee!

http://www.math.cornell.edu/~mec/2006-2007/Probability/Yahtzee.htm


2 of 6 Prof. League – Fall 2014 – Project 10

Dice:

(a) 4

(b) 4

(c) 2

(d) 3

(e) 6

One pair.

Which to roll again? cde

Dice:

(a) 4

(b) 4

(c) 4

(d) 5

(e) 4

Four of a kind.

Which to roll again? d

Dice:

(a) 4

(b) 4

(c) 4

(d) 3

(e) 4

Four of a kind.

GAME OVER

Game three

WELCOME TO Yahtzee!

Dice:

(a) 1

(b) 1

(c) 6

(d) 2

(e) 3

One pair.

Which to roll again? cde

Dice:

(a) 1

(b) 1

(c) 2

(d) 3

(e) 6

One pair.

Which to roll again? cde

Dice:



CS102 – Programming 1 – LIU 3 of 6

(a) 1

(b) 1

(c) 4

(d) 2

(e) 3

One pair.

GAME OVER

Game four

WELCOME TO Yahtzee!

Dice:

(a) 3

(b) 5

(c) 1

(d) 1

(e) 2

One pair.

Which to roll again? abe

Dice:

(a) 1

(b) 4

(c) 1

(d) 1

(e) 4

Full house.

Which to roll again?

Dice:

(a) 1

(b) 4

(c) 1

(d) 1

(e) 4

Full house.

GAME OVER

p10given.cpp

// Yahtzee game -- YOUR NAME HERE

#include <iostream>

#include <vector>

#include <ctime>

#include <cstdlib>

using namespace std;



4 of 6 Prof. League – Fall 2014 – Project 10

// Function prototypes: see documentation for each below.

int roll_one_die();

vector<int> roll_all_dice(int num);

void roll_these_again(vector<int>& dice, string which);

void print_dice(vector<int> dice);

void print_best_hand(vector<int> dice);

bool n_of_a_kind(vector<int> tally, int n);

int num_pairs(vector<int> tally);

/* Main program: you shouldn't change this very much.

* You may temporarily replace what's here with some

* test code.

*/

int main()

{

cout << "WELCOME TO Yahtzee!" << endl;

srand(time(NULL)); // Initialize PRNG

const int NUM_DICE = 5;

vector<int> dice = roll_all_dice(NUM_DICE);

int rolls_left = 2;

while(true)

{

print_dice(dice);

print_best_hand(dice);

if(rolls_left == 0)

{

break;

}

cout << "Which to roll again? ";

string selected;

getline(cin, selected);

roll_these_again(dice, selected);

rolls_left--;

}

cout << "GAME OVER" << endl;

return 0;

}

/* This function will simulate rolling one 6-sided

* die, returning a single random number between

* 1 and 6.

*/

int roll_one_die()

{



CS102 – Programming 1 – LIU 5 of 6

return 0; // TODO

}

/* This function takes takes `num`, the number of dice,

* and generates a vector containing that many random

* dice rolls.

*/

vector<int> roll_all_dice(int num)

{

vector<int> dice;

// TODO

return dice;

}

/* This function should print the values of all the dice

* in the given vector, with a lower-case letter (a-e)

* beside each one so we can refer to it. For example:

* (a) 6

* (b) 3

* (c) 5

* (d) 2

* (e) 5

*/

void print_dice(vector<int> dice)

{

// TODO

}

/* This function will roll selected dice again. The string

* `which` is what the user typed, containing a sequence

* of lower-case letters in the range a-e. The die in the

* vector corresponding to each of those should be re-rolled.

* WARNING: be careful to error-check, so that you don't end

* up trying to re-roll a die that is out of bounds!

*/

void roll_these_again(vector<int>& dice, string which)

{

// TODO

}

/* This function should compute a TALLY of the values in

* the dice vector. Then it can use that tally along with

* the two helper functions below to determine the best

* hand. The ordering of hands from best to worst is:

* - 5 of a kind (aka Yahtzee)



6 of 6 Prof. League – Fall 2014 – Project 10

* - Full house (3 of one kind, and 2 of another)

* - Four of a kind

* - Three of a kind

* - Two pair

* - One pair

*/

void print_best_hand(vector<int> dice)

{

// TODO

}

/* This function returns true/false, as to whether the

* given `tally` represents a set of dice with exactly

* `n` of a kind. It can be reused to detect 5 of a kind,

* 4 of a kind, etc.

*/

bool n_of_a_kind(vector<int> tally, int n)

{

// TODO

return false;

}

/* This function counts the number of times that `2`

* appears in the `tally` vector, which means the

* number of pairs in the hand.

*/

int num_pairs(vector<int> tally)

{

// TODO

return 0;

}


	Game one
	Game two
	Game three
	Game four
	p10given.cpp

