
Rubric for Computer Programming
Christopher League, November 2013

Can be adapted for assignments to produce software artifacts in CS102, 117, 120, 130, 155, 156, 161, 164, 601, 631, 653, 673, 690, and 
others. As stated on AAC&U VALUE rubrics, “evaluators are encouraged to assign a zero to any work…that does not meet beginning (cell 
one) level performance.”

Advanced
4

Proficient
3

Approaching Proficiency
2

Beginning
1

Syntax
Ability to understand and 
follow the rules of the 
programming language.

Program compiles and 
contains no evidence of 
misunderstanding or 
misinterpreting the syntax 
of the language.

Program compiles and is 
free from major syntactic 
misunderstandings, but 
may contain non-standard 
usage or superfluous 
elements.

Program compiles, but 
contains errors that signal 
misunderstanding of 
syntax – such as the semi-
colon in if(exp);{}

Program does not compile 
or (in a dynamic language) 
contains typographical 
errors leading to undefined 
names.

Logic
Ability to specify 
conditions, control flow, 
and data structures that are 
appropriate for the 
problem domain.

Program logic is correct, 
with no known boundary 
errors, and no redundant 
or contradictory 
conditions.

Program logic is mostly 
correct, but may contain 
an occasional boundary 
error or redundant or 
contradictory condition.

Program logic is on the 
right track with no infinite 
loops, but shows no 
recognition of
boundary conditions (such 
as < vs. <=)

Program contains some 
conditions that specify the 
opposite of what is 
required (less than vs. 
greater than), confuse 
Boolean AND/OR 
operators, or lead to 
infinite loops.

Correctness
Ability to code formulae 
and algorithms that 
reliably produce correct 
answers or appropriate 
results.

Program produces correct 
answers or appropriate 
results for all inputs tested.

Program produces correct 
answers or appropriate 
results for most inputs.

Program approaches 
correct answers or 
appropriate results for 
most inputs, but can 
contain miscalculations in 
some cases.

Program does not produce 
correct answers or 
appropriate results for 
most inputs.



Advanced
4

Proficient
3

Approaching Proficiency
2

Beginning
1

Completeness
Ability to apply rigorous 
case analysis to the 
problem domain.

Program shows evidence 
of excellent case analysis, 
and all possible cases are 
handled appropriately.

Program shows evidence 
of case analysis that is 
mostly complete, but may 
have missed minor or 
unusual cases.

Program shows some 
evidence of case analysis, 
but may be missing 
significant cases or 
mistaken in how to handle 
some cases.

Program shows little 
recognition of how 
different cases must be 
handled differently.

Clarity
Ability to format and 
document code for human 
consumption.

Program contains 
appropriate documentation 
for all major functions, 
variables, or non-trivial 
algorithms. Formatting, 
indentation, and other 
white space aids 
readability.

Program contains some 
documentation on major 
functions, variables, or 
non-trivial algorithms. 
Indentation and other 
formatting is appropriate.

Program contains some 
documentation (at least the 
student’s name and 
program’s purpose), but 
has occasionally 
misleading indentation.

Program contains no 
documentation, or grossly 
misleading indentation.

Modularity
Ability to decompose a 
problem into coherent and 
reusable functions, files, 
classes, or objects (as 
appropriate for the 
programming language 
and platform).

Program is decomposed 
into coherent and reusable 
units, and unnecessary 
repetition has been 
eliminated.

Program is decomposed 
into coherent units, but 
may still contain some 
unnecessary repetition.

Program is decomposed 
into units of appropriate 
size, but they lack 
coherence or reusability. 
Program contains 
unnecessary repetition.

Program is one big 
function or is decomposed 
in ways that make little 
sense.


	Rubric for Computer Programming

