
CS 102 – Programming 1 – LIU 1 of 3

Notes for Tuesday 18 January
23 January 2011

• Meeting 1
• read §2.1–2.2

Introduction, motivation, tools, identifiers, main, and printf. Hello, world!

Motivation

Programming a computer is a tremendously valuable skill, but it takes a lot of practice
and patience. Try to work a little every day (and a lot some days!) and don’t get discour-
aged if it starts to feel difficult. Although some people will make

In particular don’t get discouraged bymistakes. Mistakes are howwe learn. Remem-
ber that compiler errors are routine – sure, there’s a mistake, but it doesn’t reflect badly
on you. Just systematically start finding and fixing it. Professional programmers with
decades of experiences see hundreds of errors every single day.

If you feel like you’re getting lost, do not hesitate to seek help from me. I try to be
very accessible, in office hours, by appointment, or over IM. Because everything we learn
builds on everything that came before, any problem you’re having will get better only
with additional practice and expert assistance. It will not get better on its own!

Getting “hello world” to run

Here we will keep instructions on getting a simple program to run on various compiler
systems. For Windows users, I’m recommending Visual C++ Express Edition. In the
lab, we have Visual Studio 2008. For the Mac, get Apple’s XCode developer tools. Other
configuratinos are possible. If you find directions for some system not listed here, do
send them to me.

Here is the sample program we’ll use. You can also start with this for Assignment 1.

#include <stdio.h>

int main()
{

printf("Hello, world!\n");
return 0;

}

Dissecting the sample program

Here are some of the concepts we covered about the sample program today. ey are
probably incomplete.

• include means to bring in functionality (called a library) from somewhere else. In this

file:///var/www.liucs/cs102s11/a01.org


2 of 3 Prof. League – Spring 2011 – Notes for Tuesday 18 January

case, stdio.h refers to the standard input/output library, which is the home of printf.
• main() is the name of a function, or procedure, which is a sequence of steps to execute.
e parentheses indicate that it’s a function, which is why we need them even though, in
this case, they’re empty. e name main is special, because it is used as the “entry point”
of the program — it all starts here. Later on we’ll have additional functions with other
names.

• e curly brackets {} (also called braces) indicate the beginning and end of a block of
code. ey show the extent of the main procedure.

• e printf is how we do formatted output. It is a function (you can tell because of the
parentheses) from the standard input/output library.

• e double quotes indicate a string or sequence of characters. Because they are provided
to printf, these are the characters that will appear on the screen when it runs.

• One of the characters is special: it consists of the sequence backslash, then lowercase ‘n’:
\n is is called a new line character. It tells the output to go on to the next line, much
like hitting return or enter in a word processor.

• Finally, return is a keyword (there are no parentheses, so it cannot be a function) that
means we are finished with the current function. At this point, because the function
we’re talking about is main, the program ends. If you were to include extra code aer
return, it would not be executed.

• Note also the semi-colons. ere are semi-colons on statements within the block (be-
tween the curly braces), but not on the curly braces themselves, and not on the main()
declaration, and not on the #include. If you forget a semi-colon, the compiler will def-
initely let you know. However, if you put one where it is not supposed to go, it could
happen that the compiler won’t notice but the program also won’t work right! We’ll see
examples of that insidious problem later.

Identifier rules

Identifiers are how we name things in a program. main and printf are examples of
identifiers. ey both name functions: one defined in this program, and one included
from stdio.h.

Identifiers must start with a letter (upper or lower case) or an underscore character
(shi-hyphen). Following the first character, they can contain letters, numbers, or un-
derscore. ey may not contain spaces. However, we oen use the underscore to sep-
arate words that are part of the same identifier, for readability, as in: quiz_2_average
or parking_ticket_amount.

Identifiers are case-sensitive, which means that it matters whether upper- or lower-
case letters are used. Quiz and QUIZ and quiz and qUiZ are all valid identifiers but they
are different identifiers. You cannot type Quiz in one place and then expect quiz to
work in another.

Fonts

Because programming languages are picky, it’s important to configure a good font, and
make it big enough, so that characters like 0 (zero), O (capital O), 1 (one), l (lowercase



CS 102 – Programming 1 – LIU 3 of 3

l), ; (semi-colon), and : (colon) are sufficiently distinguishable.
In Visual Studio, you can configure this under Tools » Options » Fonts & Colors. It’s

also recommended to use a fixed-width (monospace) font (they were the bold ones in
Visual Studio). A reasonable choice is “Consolas”.


	 Motivation
	 Getting “hello world” to run
	 Dissecting the sample program
	 Identifier rules
	 Fonts

