
CS120 – Web Development – LIU 1 of 10

Figure 1: URL structure

HTTP

HTTP is HyperText Transport Protocol. A protocol is a language or format for inter-
operation between different systems. HyperText refers to any text with links in it.

URI/URL/URN is a Uniform Resource Indicator/Locator/Name – an identifier for
some digital object (text, image, PDF, article, audio/video, etc.) I don’t care so much
about the distinction between these three, but this is one aspect of it:

An identifier (URI/URN) does not necessarily tell you where to get it from (Ex. book
ISBN), but aURL also tells how to access/retrieve the resource (Ex. FTP=file transfer
protocol)

Anatomy of a URL

Another example: http://www.jobs.cam.ac.uk:80/job/5774/

Thepart up to the colon is the scheme, and is usually http but can be https (secure),
ftp (file transfer), tel (telephone number), and others. An example telephone URL
tomy office phone is tel:17184881274 –maybe that will be clickable when this page
is viewed on your mobile phone.

The host part of the URL can be an IP address or dotted host name (which can be
converted to an IP address by DNS). The port can be specified after a colon, but the
default port is 80 if it is omitted (actually, 80 for http and 443 for https). A computer
on the Internet can be listening for connections on multiple ports, and use the port
number of the connection to determine what services to provide.

The path starts with the slash, after the host portion, so /cgi/calendar.cgi in the
example above. Sometimes it ends with a file-name extension (.html, .pdf, .jpg),
sometimes it ends with a slash, and sometimes it’s bare.

The query starts with a questionmark, and consists of a set of parameters (variables)
and their values. Multiple parameters are separated with & (ampersand).

Another example: https://www.youtube.com/watch?v=kGOpY2J31pI&t=0m28s In
this URL, the scheme is https, the host is www.youtube.com, the port defaults to
443, the path is /watch and the query is ?v=kGOpY2J31pI&t=0m28s, which defines
two variables: the video identifier v=kGOpY2J31pI and the time at which to begin
video playback t=0m28s.

tel:17184881274


2 of 10 Prof. League – Spring 2018 – HTTP

Many sites also support short/abbreviatedURLs, such as http://youtu.be/kGOpY2J31pI
for the same video. In this case, it uses the youtu domain name within Belgium’s
.be country code.

Another example where you see a query is when you do a Google search. Search
for “web jobs” and you’ll see ?q=web+jobs appear in the URL. The plus sign appears
because aURL cannot have a space in it. It also cannot contain plenty of other special
characters, and characters such as =,& are reserved for delimiting query variables, so
there are other ways to encode special characters that we’ll see later. (Search google
for “the & symbol” and notice ?q=the+%26+symbol appear in the URL.)

GET request

AnHTTP conversation is a series of requests/responses. Request always starts from
the client, and the server responds. A request begins with one line which has three
parts:

• method = a verb, what action are we doing. The most common action is to retrieve
something, which is called GET. We’ll see the others later.

• Thepath for this request, which comes from theURL. For example, /watch?v=kGOpY2J31pI
• The protocol version, such as HTTP/1.0

So a complete, correct request line would be

GET /watch?v=kGOpY2J31pI HTTP/1.0

Following that one line, the client will specify a series of headers that modify the
request in some way. It’s just a generic way for the client/server to exchange further
information. Some common examples:

• User-Agent: Mozilla Firefox (Win8; v35) identifies what browser or other
client software is being used.

• Accept-Language: da, en-gb, es-ec identifies the preferred languages of the
user, in order. If the web site is multi-lingual, it will try to match its content to the
preferred languages. These codes mean Danish, British English, and Ecuadorian
Spanish. See http://www.metamodpro.com/browser-language-codes for more.

• Host: www.youtube.com gives the host portion of the URL. If specified, it allows
the same web server to serve multiple web sites, called virtual hosting. (Required in
version 1.1 of HTTP.)

• Referer: https://liucs.net/cs120s15/ (yes the name of this header is mis-
spelled!) gives the URL of the page on which this link was clicked (in other words,
the previous page in your browser’s history).

The headers end with a blank line. So here is a complete HTTP request that my
browser used to fetch the language-codes page:

http://www.metamodpro.com/browser-language-codes


CS120 – Web Development – LIU 3 of 10

GET /browser-language-codes HTTP/1.1

Host: www.metamodpro.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:35.0) Gecko/20100101 Firefox/35.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=

0CCAQFjAA&url=http%3A%2F%2Fwww.metamodpro.com%2Fbrowser-language-codes&e

i=uJXCVOOPL4LYggTS_4DQDQ&usg=AFQjCNE2XZTwYEgvHFkw0JQ-vHc2z4ukKA&sig2=h1Q

SWPH5pxjG9i1JanilBw&bvm=bv.84349003,d.eXY

Connection: keep-alive

If-Modified-Since: Fri, 23 Jan 2015 18:41:00 GMT

Cache-Control: max-age=0

All the web standards we’re describing are hosted at http://www.w3.org/

POST and other requests

The GET method, described in the previous section, is meant to fetch a resource.
HTTP is designed so that GET requests can safely be cached and repeated whenever
necessary. Therefore, it would be disastrous if a GETwere to trigger actions that have
important consequences like adding an item to a database or charging a credit card.
(There are some horror stories of this happening in the early days of theWeb, before
HTTP was widely understood.)

So instead of GET, we can use the POSTmethod. Browsers, servers, and proxies know
that it would be inappropriate to repeat or cache the results of a POST. When you
submit a form on the web, such as to log in to a server, register a new user account,
upload a file, or enter your credit card details – those forms are transmitted using
POST.

In addition to the headers of the GET request illustrated above, a POST often carries
a payload (also called the request body). This is an encoding of the fields in the
form, or of the file being uploaded. In the request below, notice the new headers
Content-Length and Content-Type.

POST /checkin HTTP/1.1

User-Agent: curl/7.40.0

Host: localhost:3000

Accept: */*

Content-Length: 19

Content-Type: application/x-www-form-urlencoded

name=Chris&score=32

http://www.w3.org/


4 of 10 Prof. League – Spring 2018 – HTTP

When there is a non-zero content length, then the blank line ends the headers section
and the server waits for (in this example) 19 additional bytes of payload. The payload
shown above looks a lot like the query string part of a URL. That format is called
x-www-form-urlencoded, but other content types are possible too.

In addition to GET and POST, HTTP supports several other request methods, but they
are far less widely used. They are:

• HEAD – identical to a GET, but omit the response body, so that we just receive meta-
data about the resource such as its size and last-modified time (useful)

• PUT – create or replace a named resource on the server (sometimes useful)
• DELETE – remove a named resource from the server (sometimes useful)
• PATCH – make partial updates to a resource on the server (rarely useful)
• CONNECT – has something to do with switching to a secure protocol, but not often
used (ignore)

• OPTIONS – determine what methods the server supports (ignore)
• TRACE – has something to do with proxy servers (ignore)

Different subsets of these methods are defined to be safe and idempotent.

• Safemeans that the method should not have any significant consequence other than
retrieval of information. Safe methods include GET, HEAD, OPTIONS, and TRACE.

• Idempotentmeansmultiple identical requests should have the same effect as a single
request. All the safe methods are also idempotent, but also PUT and DELETE.

Note that POST is explicitly not idempotent, which is why we reserve it for actions
that absolutely should not be repeated, such as charging customers’ credit cards.

Responses

After the server has received and processed the client’s request, it will issue its own
response. Responses begin with a single status line that contains three parts:

• The protocol version, such as HTTP/1.0
• The numeric status code, a three-digit number such as 200 or 404
• The human-friendly reason phrase, a short message such as Not Found or Internal
Server Error

Following the status line is a headers section. Commonly used headers include:

• Content-Type: The type of data to be transmitted in the payload. Often text/html

for an HTML page but can be text/plain or other data formats like image/jpeg
• Expires: Provides a date until which this content can be cached (stored and reused
without issuing a new request).



CS120 – Web Development – LIU 5 of 10

• Server: A string that identifies the server software and version – serves the same
purpose as the User-Agent header that identifies the client software.

• Set-Cookie: Provides some data to be returned to the server on the next request,
to help implement sessions – we’ll learn more about that soon.

Here is a status line and complete set of headers for a request thatmy Firefox browser
made to metamodpro.com for that language-codes page:

HTTP/1.1 200 OK

Cache-Control: post-check=0, pre-check=0

Connection: Keep-Alive

Content-Encoding: gzip

Content-Type: text/html; charset=utf-8

Date: Mon, 26 Jan 2015 22:06:27 GMT

Expires: Mon, 1 Jan 2001 00:00:00 GMT

Keep-Alive: timeout=5, max=100

Last-Modified: Mon, 26 Jan 2015 22:06:27 GMT

P3P: CP="NOI ADM DEV PSAi COM NAV OUR OTRo STP IND DEM"

Pragma: no-cache

Server: Apache

Transfer-Encoding: chunked

X-Content-Encoded-By: Joomla! 1.5

X-Powered-By: PHP/5.3.29

The numeric response codes are organized into several categories, identified by the
first digit. I’ll show only the most well-known commonly-used codes here; the com-
plete list is available fromWikipedia or the W3.

• Codes beginning with 2 (indicated as 2xx) declare a successful transaction:
– 200 OK is the most common, by far. You can see that in the extended example

above.
– 201 Created is used just to indicate the creation of a new resource on the server

(used with the PUTmethod).
• Codes such as 3xx indicate some form of redirection – for example, they ask the
client to repeat the request at a different URL.

– 302 Found provides a new URL in the Location header.
– 304 Not Modified is usedwhen the client’s request contained an If-Modified-Since

header, and the resource has not been modified, so the client should continue
to use its cached copy.

• The 4xx indicate an error on the part of the client.
– 400 Bad Request means that somehow the syntax of he request was not un-

derstood.
– 403 Forbiddenmeans that access has been denied to the requested resource.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10


6 of 10 Prof. League – Spring 2018 – HTTP

Figure 2: @stevelosh on Twitter

– 404 Not Foundmeans the requested resource could not be found, but may be
available again in the future.

• Finally, 5xx indicate an error on the part of the server.
– 500 Internal Server Error is a completely generic error message. If the

server-side program crashes or experiences a run-time error, this is the typi-
cal response.

– 501 Not Implemented means the server lacks the ability to fulfill the request,
but it may be implemented in the future.

– 503 Service Unavailablemeans the server is currently unavailable, because
it is overloaded or down for maintenance.

The curl command

The curl command is an indispensable tool for web developers. It allows you to
issue highly-customized HTTP requests directly from the command line, bypassing
the web browser.

• On Windows, it was installed along with Git, so you run it by opening the Git bash
application.

• On Mac, it is included with the OS, so you run it in the Utilities » Terminal appli-

https://twitter.com/stevelosh/status/372740571749572610


CS120 – Web Development – LIU 7 of 10

cation.

Either way, when you enter curl at the terminal prompt, you should get this infor-
mational message:

curl: try 'curl --help' or 'curl --manual' for more information

The simplest use of curl is just to provide a URL on the command line. It will issue
a GET request, and then dump the payload (response body) into your terminal. For
example, try:

curl http://www.google.com/

You’ll get a whole mess of HTML and Javascript code, probably ending with
</script></div></body></html>.

By specifying the -I option (that’s the capital letter that rhymes with ‘eye’), you in-
struct curl to do a HEAD instead of GET and show the response headers instead of the
payload.

curl -I http://www.google.com/

On my system, the result was:

HTTP/1.1 200 OK

Date: Mon, 26 Jan 2015 22:52:58 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=ISO-8859-1

Set-Cookie: PREF=ID=4ae6a2df633f4c61:FF=0:TM=1422312778:LM=1422312778:S=WkV9

8-7Qk9-y01NS;expires=Wed, 25-Jan-2017 22:52:58 GMT; path=/; domain=.goog

le.com

Set-Cookie: NID=67=TCZT1yid-KNBAX4NqXJ8QVKIp48mGjzmBFYYE_d9rdvybLTQqNgsID13Y

mCssBG54kRC7kLAVeLokFrOBNmzh4-kfVX5C4LPXzi2DBFYvZUArv3yJS0aSqaE_uNSsPV0;

expires=Tue, 28-Jul-2015 22:52:58 GMT; path=/; domain=.google.com; HttpO

nly

P3P: CP="This is not a P3P policy! See http://www.google.com/support/account

s/bin/answer.py?hl=en&answer=151657 for more info."

Server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic,p=0.02

Transfer-Encoding: chunked

Accept-Ranges: none

Vary: Accept-Encoding



8 of 10 Prof. League – Spring 2018 – HTTP

Adding the -v option will show the (mostly) complete conversation between client
and server. For example, let’s try it, but also remove the www. from the URL, so we
try access google.com directly.

curl -v http://google.com

The result is large, but manageable. Lines starting with * are debugging messages
from curl itself. Then data sent by the client is marked > and by the server is <.
Finally, between <HTML> and </HTML> is the response body.

* Rebuilt URL to: http://google.com/

* Trying 173.194.123.37...

* Connected to google.com (173.194.123.37) port 80 (#0)

> GET / HTTP/1.1

> User-Agent: curl/7.40.0

> Host: google.com

> Accept: */*

>

< HTTP/1.1 301 Moved Permanently

< Location: http://www.google.com/

< Content-Type: text/html; charset=UTF-8

< Date: Mon, 26 Jan 2015 22:59:11 GMT

< Expires: Wed, 25 Feb 2015 22:59:11 GMT

< Cache-Control: public, max-age=2592000

< Server: gws

< Content-Length: 219

< X-XSS-Protection: 1; mode=block

< X-Frame-Options: SAMEORIGIN

< Alternate-Protocol: 80:quic,p=0.02

<

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">

<TITLE>301 Moved</TITLE></HEAD><BODY>

<H1>301 Moved</H1>

The document has moved

<A HREF="http://www.google.com/">here</A>.

</BODY></HTML>

* Connection #0 to host google.com left intact

You can see that this request resulted in a 301 Moved Permanently response, and the
Location header tells us we should access http://www.google.com/ instead. (You
can add the -L option to ask curl to follow these 3xx redirect messages automati-
cally.)

Another fancy trick with curl is we can force it to send particular headers in its
request, using the -H option. You must put the header content in quotes. For ex-
ample, if you want to use the Accept-Language header to get a Spanish version of
the Google web page:



CS120 – Web Development – LIU 9 of 10

curl -H "Accept-Language: es" http://www.google.com/

It still looks like a huge pile of HTML and Javascript, but if you trawl carefully you
can find phrases like Iniciar sesión (log in), Noticias, Imágenes (for news and image
search), and an ad for Google Chrome: Una forma más rápida de navegar la web.
(Although sometimes the accented characters won’t appear properly in the terminal,
depending on your configuration.)

We’ll cover one more trick that curl can do: specifying form parameters for a POST
request, using -d and then a quoted variable assignment. This is part of how to do
check-ins 1 and 2, so we’ll use the URL provided there as an example:

curl -v -d "name=My+Name" http://cs120.liucs.net/checkin

With the -vwe get to see (almost) the entire conversation, but I’ll abbreviate it slightly
here:

> POST /checkin HTTP/1.1

> User-Agent: curl/7.40.0

> Host: cs120.liucs.net

> Accept: */*

> Content-Length: 12

> Content-Type: application/x-www-form-urlencoded

>

< HTTP/1.1 400 Bad Request

< Server: Warp/3.0.5

< Content-Type: text/plain; charset=utf-8

<

InvalidArgs ["Missing required parameter: score"]

The request went through to the server, and it sent 12 bytes of payload (count up
the number of characters in name=My+Name). The response was 400 Bad Request

because you are also expected to specify a parameter score. See the Check-in 2 spec
for more details.

To specify additional parameters, use a separate -d for each.

Further resources

• Video: WTF isHTTP [7:42] especially covers the difference betweenGET and POST
methods.

• A limerick by classam on Twitter – see also HTCPCP

I wanted a beverage, hot
From an HTTP coffeebot.

checkins.html
https://www.youtube.com/watch?v=kGOpY2J31pI
https://twitter.com/classam/status/556185925844099072
http://en.wikipedia.org/wiki/Hyper_Text_Coffee_Pot_Control_Protocol


10 of 10 Prof. League – Spring 2018 – HTTP

My coffee was spurned
An error returned:
418 I AM A TEAPOT

• The clever 404 and 500 pages at Bloomberg

https://twitter.com/livmadsen/status/560432582324936705?s=09

	Anatomy of a URL
	GET request
	POST and other requests
	Responses
	The curl command
	Further resources

