
CS162 – Artificial Intelligence – LIU 1 of 3

Assignment 2
16 September 2012

DueWednesday 19 September at 1am

Implement heuristic for 8-puzzle

Open any file within your cs102 folder in gedit, and then choose the “Sync with git”
option from the Tools » External Tools menu.

Now you should have an a2 folder. Open 8puz.cpp. is is an implementation of the
8-puzzle using the A* algorithm. Use Alt-F5 to run it. e output will end something
like this:

GOAL!
1. up: 235:180:764
2. up: 235:184:760
3. right: 235:184:706
4. down: 235:104:786
5. left: 235:140:786
6. down: 230:145:786
7. right: 203:145:786
8. right: 023:145:786
9. up: 123:045:786
10. left: 123:405:786
11. left: 123:450:786
12. up: 123:456:780
Visited 1158 nodes.

It scrolled way off the screen, but the start state was 230:185:764. e zero represents
the empty space on the 3×3 grid. e names of the moves are based on which direction
a tile moves into the empty space. For example, in step 1, “up” refers to moving the
5 from the middle-right slot up into the empty space at the upper-right. e result is
235:180:764 (so the zero moved down).

You can find how the initial board was created in the puz_state::puz_state con-
structor, around line 40. Aer setting up the tiles in their solved order, this constructor
calls a series of moves that shuffle the tiles:

move(down);
move(right);
move(right);
move(down);



2 of 3 Prof. League – Fall 2012 – Assignment 2

move(left);
move(left);
move(up);
move(right);
move(up);
move(left);
move(down);
move(down);

You can verify that these moves are precisely the opposite of the solution the program
found, and in reverse order.

Now look at the heuristic method, near line 24. You can see that it currently returns
zero for every state:

int puz_state::heuristic() const {
int score = 0;
// TO DO
return score;

}

Since all states have the same heuristic, our A* algorithm isn’t really doing any better
than BFS. Your task is to implement a better heuristic, and see whether we can find the
path by visiting fewer than 1158 nodes.

As described in the book, the heuristic should count the number of tiles that are out
of place. e tiles are kept in an array (actually a C++ vector, but it works the same
way) called tiles. is array holds 9 integers (in positions 0 through 8). e value 0
represents the empty space, and 1–8 represent the tiles.

To test your heuristic independently of the A* algorithm, you can temporarily comment
out the body of main (around line 140) and replace it with something like this:

puz_state ps;
ps.move(puz_state::down);
ps.move(puz_state::right);
cout << ps.heuristic() << endl;

is sets up a puzzle state, makes some moves, and then prints out the heuristic score
for the resulting board. In this particular case, your heuristic method should produce 2.

When you are satisfied with your heuristic (or really, any time youwant to snapshot your
changes to the server), just use “Sync with git.”



CS162 – Artificial Intelligence – LIU 3 of 3

Figure 1: Moves and heuristics


	Implement heuristic for 8-puzzle

