
CS162 – Artificial Intelligence – LIU 1 of 4

Assignment 5
12 November 2012

DueWednesday 21 November at 1am

e purpose of this assignment is to experiment with building decision trees using the
ID3 algorithm.

Getting started

Open any file within your cs162 folder in the editor, and then choose the “Sync with
git” option from the Tools » External Tools menu.

Now you should have an a5 folder, with several C++ files:

entropy.cpp
main.cpp
Makefile
shrooms.cpp
shrooms.h
tree.cpp
tree.h

You are welcome to browse through all of these, but your work will mainly be in
entropy.cpp. Open that file now, and then use Tools » External Tools » Run. You
should see output like this:

Test: entropy 5 == 0 (PASS)
Test: entropy 4 4 == 0 (FAIL) expected 1
Test: entropy 4 3 5 == 0 (FAIL) expected 1.55459
Test: entropy 1 7 == 0 (FAIL) expected 0.54356

Your job will be to implement the entropy calculation, so that these tests pass. en we
will use your entropy calculation to build a decision tree to help us to decide whether to
eat a (possibly poisonous) mushroom!

Computing entropy

You should read the ID3 algorithm handout and experiment withmy Entropy calculator
first.

e function in entropy.cpp that performs the relevant calculation is this one:

file:entropy.html


2 of 4 Prof. League – Fall 2012 – Assignment 5

double entropy(int breakdown[CHAR_MAX]) {
// TO DO
return 0.0;

}

e parameter breakdown is an array containing counts for up to 127 (CHAR_MAX) clas-
sifications. For example:

Figure 1:

e illustrated array represents that there are 5 items in category 0, 4 in category 1, none
in category 2, 3 in category 3, and the rest are all zero (unused).

You can type these into the entropy calculator, and see that the result should be some-
thing like 1.5545851693377994 – we’ll round it off to 1.55459.

Figure 2:

If you look in the main function at the bottom of entropy.cpp, you also see several test
cases for the entropy function:

test_entropy(0.0, 5);
test_entropy(1.0, 4, 4);
test_entropy(1.55459, 4, 3, 5);
test_entropy(0.54356, 1, 7);

e third one covers this case: the expected value (1.55459) is provided as the first pa-
rameter, and the remaining parameters are the numbers in each category (the ordering
of categories doesn’t matter when we’re doing these calculations).

To do the calculation, you’ll first need a variable count to reflectN, the total number of
items across all categories. Use a loop to add up the breakdowns. In the example, you
should get 5+4+0+3 (plus a bunch more zeroes), which is 12.

file:entropy.html


CS162 – Artificial Intelligence – LIU 3 of 4

Next, you need to do the log calculations. You can use a C function log2 to compute
the base-2 logarithm. For each non-zero term K in the breakdown array, you’ll compute
(−K/N) ∗ log2(K/N). e sum of these terms is the entropy.

Get your function to work with all the test cases given, then use the entropy calculator
and add three new test cases. ey should all pass.

Shrooms!

Now, uncomment the following line in main:

shroom_main();

is will enable the ID3 algorithm to build a decision tree, using your entropy computa-
tion. e data we will use are located in shrooms.cpp. e first part of this file defines
the attributes of mushrooms, such as cap shape and odor:

const char* mushroomAttributes[NUM_ATTRIBUTES] = {
"classification", // edible=e, poisonous=p
"cap-shape", // bell=b,conical=c,convex=x,flat=f,

// knobbed=k,sunken=s
"cap-surface", // fibrous=f,grooves=g,scaly=y,smooth=s
"cap-color", // brown=n,buff=b,cinnamon=c,gray=g,green=r,

// pink=p,purple=u,red=e,white=w,yellow=y
"bruises?", // bruises=t,no=f
"odor", // almond=a,anise=l,creosote=c,fishy=y,foul=f,

// musty=m,none=n,pungent=p,spicy=s

We use single characters to represent each possible value, for example, cap-color ==
rmeans that the color of the cap is green.

Below the attribute definitions is the complete mushroom data. ey begin like this:

char mushroomData [NUM_SAMPLES][NUM_ATTRIBUTES] = {
{'p','x','s','n','t','p','f','c','n','k','e','e','s','s','w','w','p','w','o','p','k','s','u'},
{'e','x','s','y','t','a','f','c','b','k','e','c','s','s','w','w','p','w','o','p','n','n','g'},

e classification is all the way to the le. So the first example here is poisonous, and the
second example is edible. ere are 8,124 examples in the database.

When you run your program now, aer your entropy test cases, it will ask you what
portion of the data to use for training. Enter a number between 0 and 1:

=========== ID3 Decision Tree Learning

What portion of data should we use for training? .8
6499 in training set, 1625 in test set.



4 of 4 Prof. League – Fall 2012 – Assignment 5

In this case, we entered .8. e program will now randomize the examples, and look at
6,499 of them (80% of 8124) to build a decision tree. en it will test that tree on the
remaining 1,625 examples, and see how many it got right.

Part of the correct tree is given below, I’ll let your program figure out the rest.

odor == a # almond
E
odor == l # anise

E
P

I added the comments to indicate the meaning of the one-letter abbreviations for the
odor. e indentation here indicates the structure of the tree. If the odor is of almonds,
then the mushroom is considered edible (E). Otherwise, if the odor is of anise, it’s still
considered edible. Otherwise (neither almonds nor anise), it’s categorized as poisonous
(P).

If your entropy function is working, the tree you get will be much larger. Try drawing
the tree in a traditional format.

Using 80% of the data for training will usually be enough to get 100% of the remaining
data correct, but experiment with other ratios and see what happens.

Commit your code and observations using “Sync with git.”


	Getting started
	Computing entropy
	Shrooms!

