CS162 - Artificial Intelligence - LIU 10f6

Assignment 7

7 December 2012

Due Monday 17 December at 1am

In this assignment, you will design and train a neural network to accomplish some clas-
sification task.

Choose a data set

The UCI Machine Learning Archive hosts various data sets suitable for testing learning
algorithms. I suggest clicking on “View ALL Data Sets” on the right side of the page.
That provides a nice interface in which you can filter by data type or area of interest.

'Gévl Il:é- :—r_ﬂ |r archive ics.uci.eduin ﬂ * K =

ra
i

L\-\._'J./ l‘c_{-’?

Machine Learning Repository view ALL Data Sets

Center for Machne Leaming &nd ke gent Syste

Welcome to the UC Irvine Machine Leaming Repositaryl

Figure 1:

The data should be suitable for a classification task, not clustering, recommendations,
or regression. Neural networks support both categorical and numerical data, you'll just
want to keep the number of attributes to less than 100, because well have to tune the way
each attribute is presented to the network.

When you click on the data set, you'll see a description, citations, and details about the
attributes. There are links near the top to the “Data Folder”, and there you’ll find a list of
files ending in .data (the raw data) or .names (attribute descriptions).

Download the data and descriptions. We used the Mushroom data from the UCI repos-
itory previously (assignment 5), so I'll explore that — but you should choose something
else for your project. The .names file contains:

1. Title: Mushroom Database
2. Sources:

(a) Mushroom records drawn from The Audubon Society Field Guide to North
American Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets/Mushroom

20f6 Prof. League - Fall 2012 - Assignment 7

A. Knopf
(b) Donor: Jeff Schlimmer (Jeffrey.Schlimmer®a.gp.cs.cmu.edu)
(c) Date: 27 April 1987

3. Past Usage:

1. Schlimmer,J.S. (1987). Concept Acquisition Through Representational
Adjustment (Technical Report 87-19). Doctoral disseration, Department
of Information and Computer Science, University of California, Irvine.
—-—- STAGGER: asymptoted to 95} classification accuracy after reviewing

1000 instances.

[etc.]
5. Number of Instances: 8124

6. Number of Attributes: 22 (all nominally valued)

7. Attribute Information: (classes: edible=e, poisonous=p)
1. cap-shape: bell=b,conical=c,convex=x,flat=f,
knobbed=k, sunken=s
2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r,
pink=p,purple=u,red=e,white=w,yellow=y

[etc.]

The .data file is a text file with comma-separated values (CSV), which can be imported
easily into Excel or other spreadsheet applications:

p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,0,p,k,s,u
e,x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,0,p,n,n,g
e,b,s,w,t,1,f,c,b,n,e,c,s,s,w,w,p,w,0,p,n,n,m
p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,0,p,k,s,u
e,x,s,g,f,n,f,w,b,k,t,e,s,s,w,w,p,w,0,e,n,a,g
[etc.]

Design your network

Your next task is to design your neural network architecture: how many neurons in each
layer, and how to map neuronal activations to and from the data set?

Input layer

The number of input neurons will be based on the number of attributes in your data set,
but it may not be a one-to-one match.

CS162 - Artificial Intelligence - LIU 30f6

Generally, a continuous (real number) attribute can map directly to one neuron. There
are no continuous attributes in the mushroom set, but the Heart Disease data contains
a few, such as:

thalach: maximum heart rate achieved

which has values like 127, 154, or 166. It is helpful, however, to normalize these values
to the range 0..1, so they are not terribly out of proportion to the inputs from other
attributes. In the case of heart rate, we would find the minimum (60) and the maximum
(182) in the data file. Then, to convert any value, we subtract the minimum and divide
by the size of the range (182-60 = 122):

Raw value Normalized value
60 0.0 = (60-60)/122
127 0.549180327869 = (127-60)/122
154 0.770491803279 = (154-60)/122
166 0.868852459016 = (166-60)/122
182 1.0 = (182-60)/122

A discrete (categorical) attribute must be translated in some way, usually using a binary
encoding. Let’s take the cap-shape of mushrooms as an example. These are the possible
values:

bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s

Because there are 6 possible values, we can represent them in [log2(6)] = 3 input
neurons, like this:

Code Category # Binary Input[0] Input[1] Input[2]
bell 0 000 0.0 0.0 0.0
c conical 1 001 0.0 0.0 1.0
X convex 2 010 0.0 1.0 0.0
£ flat 3 011 0.0 1.0 1.0
k knobbed 4 100 1.0 0.0 0.0
s sunken 5 101 1.0 0.0 1.0

Work through the attribute descriptions for your data set to determine the number of
input neurons, the normalization parameters for continuous attributes, and the binary
encoding for discrete attributes.

Hidden layer

You will have to decide how many neurons to use in the hidden layer. Too few, and
the network will not be sophisticated enough to recognize the patterns in the data. Too
many, and the network may take longer to converge on an acceptable solution.

I would recommend starting with the same number of hidden neurons as input neurons,
and then experiment with reducing it.

http://archive.ics.uci.edu/ml/datasets/Heart+Disease

40f6 Prof. League - Fall 2012 - Assignment 7

Output layer

Most classifications will be discrete categories: poisonous/edible for mushrooms, or the
diagnosis of heart disease in that data set:

num: diagnosis of heart disease (angiographic disease status)
—-- Value 0: < 50% diameter narrowing
-- Value 1: > 50% diameter narrowing

You will want to have one output neuron for each possible classification, and use the
“winner take all” strategy - the neuron with the highest activation determines the result.
Here would be the expected outputs for the categories of mushrooms:

Code Category Output[0] Output[1]

e edible 1.0 0.0
P poison 0.0 1.0
Implementation

After doing “Sync with git” from your cs162 folder, you should see a sub-folder a7 with
my implementation of a neural network. Start in neuro.h, which defines the network
dimensions:

const int INPUT_NEURONS = 57;
const int HIDDEN_ NEURONS 10;
const int OUTPUT_NEURONS = 2;

These are currently set up for the mushroom data, but you can alter them for your own
network.

Next, in main. cpp, you will find a reference to the file name containing the data set:

read_csv("shrooms.data", data);

Save your .data file to the a7 folder, and adjust the file name. Make sure the read_csv
is capable of reading the data file. If it is, you should see a message like this upon running
the program.

Read 8124 records x 23 attributes from shrooms.data

Next, we'll examine the two functions that map the data to the input and output neurons,
respectively:

CS162 - Artificial Intelligence - LIU 50of6

void set_network_inputs(vector<string>& row);
void set_desired_outputs(vector<string>& row, double out [0UTPUT_NEURONS]

The implementations of these are just below the end of main(). Lets begin with
set_desired_outputs. This is where we implement the winner-take-all. In the
shrooms data file, the edible/poisonous classification is the first (Oth) attribute, and it’s
a single character, € or ‘p. When we access row [0], we get the string value of the Oth
attribute, and the extra [0] grabs the first (0th) character of that string.

switch(row[0] [0]) {

case 'e':
out[0] = 1;
out[1] = 0;
break;

case 'p':
out[0] = 0;
out[1] = 1;
break;

default:
cout << "Error: unexpected classification " << row[0][0] << "\n";
abort();

}

The default case helps detect potential errors in parsing the file.

Your output interpretation will be similar, but it must be based on the format of your
data and the number of output neurons.

As for the network inputs, take a look at the set_network_inputs function for the
mushroom data in main. cpp:

int 1 = 0;

// 1. cap-shape: bell=b,conical=c,conver=z, flat=f,
// knobbed=k, sunken=s

switch(row[1][0]) {

case 'b':
case 'c':
case 'x':
case 'f':
case 'k':
case 's':
default:

cout << "Error: unhandled cap-shape " << row[1][0] <<

inputs [i++]
inputs [1++]
inputs [i++]
inputs [i++]
inputs [1++]
inputs [i++]

abort();

[

=, O O O O

inputs [i++]
inputs [i++]
inputs [i++]
inputs [i++]
inputs [i++]
inputs [i++]

inputs [i++]
inputs [i++]
inputs [i++]
inputs [i++]
inputs [i++]
inputs [i++]

; break;
; break;

; break;

0
1
0; break;
1
0; break;
1

; break;

ll\n" ;

60f6 Prof. League - Fall 2012 - Assignment 7

This fragment illustrates converting a discrete value, represented by single characters,
into bits in a binary encoding. You can see that the zeroes and ones assigned to
inputs [i++] match the binary encodings in the previous table.

If your data set has real-valued inputs, this is where you would normalize them to the
range 0.0-1.0.

Experiments

Once you have these input and output functions completed, you can experiment with
training the network. Determine how many cycles it takes to converge to a solution with
different proportions of training vs. test data. Then experiment with different numbers
of hidden neurons.

Write up your observations. Notify me if you have trouble getting the network to con-
verge at all, or if your input/output functions do not seem to work.

	Choose a data set
	Design your network
	Input layer
	Hidden layer
	Output layer

	Implementation
	Experiments

