
CS164 – Software Engineering – LIU 1 of 8

Milestone 3
19 February 2013

due Sunday 3 March at midnight

is milestone should be completed individually — I expect a commit from everyone.
Youmay base yourwork on the requirements document by your own group, or any other
group.

Your goal in this milestone is to build the preferences screen of your game app. Your
screen should have at three different controls, and their settings should persist across
leaving and restarting the app. You can implement this screen directly within the “hello
world” app you already created. e steps are outlined below.

Respond to a button

In your “hello world” project, open the MyActivity class (in the src folder) as well as
res/layout/main.xml. In the layout file, select the “Hello World” message. You have
to give it an id property of the form @+id/NAME where NAME can be whatever you want.
I used helloText.

Figure 1:

Save that and switch to the MyActivity class. We’re going to obtain a handle to that text
view so we can modify the text as the app is running. First, declare an instance variable
inside the class, but outside of any method:

TextView helloText;

IntelliJ should offer to import android.widget.TextView. en, inside the onCreate
method, add this line aer setContentView:



2 of 8 Prof. League – Spring 2013 – Milestone 3

helloText = (TextView) findViewById(R.id.helloText);

Finally let’s add a new method to the class. When called, it will update the text in the
view. IntelliJ should offer to import android.view.View as you type this.

public void clickMe(View v) {
helloText.setText("Thanks for clicking!");

}

Save that file and switch back to the layout. Now it is time to “wire up” a button to
the clickMe method. From the Widgets section on the right, drag the Button onto the
canvas. Depending on where you drag it, you can automatically select to have it le-
aligned, right-aligned, centered, or fill the parent horizontally.

Figure 2:

In the properties section, change the text of the button (I wrote “Click me!”) and use
the drop-down for the onClick property to select the clickMe method you just added
to MyActivity.

Save everything and run it in the emulator. When you push the button, the text view
should respond.

Create a preferences activity

In the Project explorer on the le, right-click on the layout folder (within res) and
select New » Layout Resource File. Name your file preferences.xml and hit OK.

Whenever you create a new file, IntelliJ may ask whether to add it to git. Always say yes.
Remember it if you don’t want to be bothered with this again.

In this layout, we will add controls corresponding to your app preferences (settings).
Let’s start by adding a single check-box to control background music. Set the id and
text properties.

Now we’ll create the corresponding Java class. In the Project explorer on the le, right-
click on the package in the src/ folder (probably called com.example.something) and
select New » Java Class. Name your new class SettingsActivity and hit OK.



CS164 – Software Engineering – LIU 3 of 8

Figure 3:

Figure 4:

Figure 5:



4 of 8 Prof. League – Spring 2013 – Milestone 3

Figure 6:

Figure 7:

IntelliJ gives you an empty class. Make it extend Activity and override the onCreate
method, as follows:

import android.app.Activity;
import android.os.Bundle;

public class SettingsActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.preferences);

}
}

In the future, you can use Code » Generate » Override Methods… to stub out the
appropriate code for methods like onCreate. You’ll still have to add the call to
setContentView.

Now you’ve got an Activity corresponding to the preferences screen, but it won’t open by
default when you run the program. We need to ask Android to open it using an Intent.
e first step is to declare the activity in the AndroidManifest.xml. Open that from
the project explorer and look for the existing <activity>…</activity> declaration:



CS164 – Software Engineering – LIU 5 of 8

Figure 8:

<activity android:name="MyActivity"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

Right below that, add a new one:

<activity android:name="SettingsActivity"
android:label="Preferences">

</activity>

Save it and switch back to themain MyActivity class. When the user presses the button,
we want to cause a switch to the Preferences screen. Add these two lines to the clickMe
method:

Intent intent = new Intent(this, SettingsActivity.class);
startActivity(intent);

Now when you run the program, pressing the “Click me!” button should bring up the
preferences screen. You can use the back button on the emulator interface to return to
the main screen.

As you flip back and forth, notice that changes made on the preferences screen do not
persist. If I turn on sound effects, when I return to the preferences, they are off again.
Fixing that will be the next step.



6 of 8 Prof. League – Spring 2013 – Milestone 3

Figure 9:

You should also add whatever additional controls and labels you want on your app’s
preferences screen.

Save the preferences

You should read elsewhere about the life-cycle of an activity in Android. Overriding
methods such as onPause, onStop, and onDestroy give us an opportunity to save set-
tings as the user leaves our activity, whether by using the back button, home button, or
due to an incoming phone call.

Figure 10:

http://developer.android.com/training/basics/activity-lifecycle/starting.html


CS164 – Software Engineering – LIU 7 of 8

So, we’re going to save the preferences in onPause and restore the preferences in
onCreate. You may also want to do some logging from these methods to see when
these things happen. You can read more about logging here.

Override onPause in SettingsActivity using Code » Generate » Override Methods,
as described above. at will generate this:

@Override
protected void onPause() {

super.onPause();
}

Aer calling super.onPause, youwill want to grab the values of any of your preferences
controls and then save them to a file. First, we need handles to those controls. We could
use findViewById directly here, but since we’ll also need to access them in onCreate,
let’s use an instance variable. is is exactly the same as the way we saved the TextView
helloText in MyActivity, except my sound effects preference is a CheckBox instead
of a TextView. Here’s the instance variable — remember, it should be declared within
the class, but outside of any method.

CheckBox soundEffects;

While you’re out there, let’s also define a static instance variable for the name of our
preferences file. Just name this aer your application or project name.

static final String prefsName = "m3hello";

Back in onCreate, you’ll grab the checkbox using findViewById, and then restore its
value from the preferences file:

soundEffects = (CheckBox) findViewById(R.id.soundEffects);
SharedPreferences pref = getSharedPreferences(prefsName, Context.MODE_PRIVATE);
soundEffects.setChecked(pref.getBoolean("soundEffects", true));

e second parameter to pref.getBoolean is true — this is used as the default value
of the preference if the preferences file does not exist yet. Finally, in onPause, you can
save the preference value:

SharedPreferences pref = getSharedPreferences(prefsName, Context.MODE_PRIVATE);
SharedPreferences.Editor edit = pref.edit();
edit.putBoolean("soundEffects", soundEffects.isChecked());
edit.commit();

file:layout-canvas.html#logging


8 of 8 Prof. League – Spring 2013 – Milestone 3

If that all worked, then as youmake the round-trip between yourmain MyActivity and
the SettingsActivity, the Boolean value of the sound effects control will be saved.

e SharedPreferences facility has methods for saving string values, booleans, inte-
gers, floats, etc. Apply the same technique to the rest of your preference controls. ere
is more documentation about the shared preferences facility on the Android Developer
site.

http://developer.android.com/training/basics/data-storage/shared-preferences.html

	Respond to a button
	Create a preferences activity
	Save the preferences

