
CS164 – Software Engineering – LIU 1 of 7

Milestone 1
due at midnight on Mon Feb 1 (125 points)

For this milestone, we’re going to gain a little more experience with Java and build a
tiny web server application. Wewill use the Spark framework at http://sparkjava.
com/.

Basic Spark project

1. To get started, create a fresh IntelliJ project named sparkdemo. Don’t use a project
template. Make sure theProject location is a new sparkdemo directory beneath your
cs164s16 repository directory.

Figure 1: Project name and location

2. Once the new project is open, you can useVCS » Enable VCS Integration, as we did
in the Hello project. Commit and push to the Git server as often as you like. When
you have a commit candidate that you think is your final submission, please include
#milestone1 in the commit message – I will search for that when figuring out what
to grade.

3. Now we want to set up the libraries we’ll use. Go to File » Project Structure and
select Libraries from the left panel. Then hit the green plus sign in the next column
and select From Maven. In the search box, type (or paste) com.sparkjava:spark-
core:2.3 and hit the search icon. Once it finds it, you can press OK. Confirm that
you want to incorporate the library into your sparkdemomodule.

4. Repeat those steps to also add the library com.sparkjava:spark-template-

handlebars:2.3.

5. In your src directory, create a new Java class called SparkDemo. At the top of the file,
before the class declaration, add:

import static spark.Spark.*;

6. Inside the class declaration, create a mainmethod like this:

public static void main(String[] args) {

get("/hello", (request, response) -> "Hello Spark!");

}

http://sparkjava.com/
http://sparkjava.com/
setup.html#hello-world

2 of 7 Prof. League – Spring 2016 – Milestone 1

7. Select Run » Run… from the menu, and choose SparkDemo as the class to run.

8. You should see some output like:

[Thread-0] INFO org.eclipse.jetty.util.log - Logging initialized @437ms

[Thread-0] INFO spark.webserver.JettySparkServer - == Spark has ignited ...

[Thread-0] INFO spark.webserver.JettySparkServer - >> Listening on 0.0.0.0:4567

[Thread-0] INFO org.eclipse.jetty.server.Server - jetty-9.3.2.v20150730

[Thread-0] INFO org.eclipse.jetty.server.ServerConnector - Started ...

[Thread-0] INFO org.eclipse.jetty.server.Server - Started @793ms

The important part is that “Listening on 0.0.0.0:4567” – it indicates that
your server is ready to be tested. Switch to any web browser and enter
http://localhost:4567/hello into the address bar. You should see the “Hello
Spark!” message.

9. Your web server continues running until you explicitly stop it using the red square
button to the left of the program output. On my system, the stop button changes to
a skull, and then you have to press it one more time to really kill the program.

Figure 2: Stop and kill the running server before starting a new one

If you try to run the server again while another instance is running, you’ll see an error
message like:

java.net.BindException: Address already in use

Response function

The syntax used in the “Hello Spark” example above is that of a Java 8 higher-order
function, also called a “lambda expression”:

(request, response) -> "Hello Spark!"

CS164 – Software Engineering – LIU 3 of 7

It is a function that takes two parameters: a request object and a response object,
and then it returns something, in this case a string. If our function needs to be a
little more complex, we can use curly braces and return, as with normal methods.
That version would look like this:

(request, response) -> {

return "Hello Spark!";

}

Expand your “Hello” response function as shown, and test it again. In the context of
the get statement, it will look like this:

get("/hello", (request, response) -> {

return "Hello Spark!";

});

Now we can begin to do some more complicated things in the response function.
Let’s say, for example, we want to count howmany times the page is accessed. Add a
class variable outside of the mainmethod:

static int counter = 0;

Then, your response function can update the variable and use it in the message.

get("/hello", (request, response) -> {

counter++;

return "Hello Spark #" + counter;

});

Restart the server and test the /hellopage again. Each time you reload it, the counter
should increment. This counter is only in memory though, each time you restart the
server it gets set back to zero. Later on we’ll learn how to have data persist across
server restarts.

HTML template

In the previous section, we used Java string concatenation to pull together a constant
message with some variable data:

return "Hello Spark #" + counter;

4 of 7 Prof. League – Spring 2016 – Milestone 1

As our pages and the data on them get more complex, composing them with Java
strings becomes extremely tedious. That’s what HTML templates are for.

There are tons of HTML templating languages, and many are supported by Spark.
The one I’m going to recommend is Handlebars. You should have already added the
spark-template-handlebars library to your project.

To use a template, we need tomake two changes to the code, and then create template
files within our project. Let’s do the code changes first.

Instead of returning a string, we’re going to return a ModelAndView object. This pairs
together some data with the name of the template to use to display it. Then we also
have to specify the template engine to use. Here is the basic format:

get("/hello", (request, response) -> {

return new ModelAndView(null, "hello.html");

}, new HandlebarsTemplateEngine());

If your IDEdoesn’t automatically import ModelAndView and/or HandlebarsTemplateEngine,
you can manually add:

import spark.ModelAndView;
import spark.template.handlebars.HandlebarsTemplateEngine;

at the top of the file. After restarting the server and reloading the /hello page, you
should see “500 Internal Server Error.” For the detailed error message, look in the
IntelliJ Run console. It will show something like

org.eclipse.jetty.io.RuntimeIOException:

java.io.FileNotFoundException:

/templates/hello.html

So the problem is that we haven’t provided the hello.html file.

Adding the template files properly is a little tricky, so pay close attention to these
steps. In IntelliJ, select File » Project Structure from the menu, and then select
Modules in the left pane.

The Sources section in the main part of the dialog shows you your file tree. Right-
click on the top-level folder (probably called sparkdemo) and select New Folder.
Name your folder resources. Once the folder appears, right-click that folder and
select Resources. The summary at the right should distinguish the source folder
from the resource folder.

You can clickOK to dismiss the Project Structure dialog.

Now there should be your resources folder in the project pane to the left. Right-
click on that and select New » Directory. Name your directory templates. Then

http://handlebarsjs.com/

CS164 – Software Engineering – LIU 5 of 7

Figure 3: Source and resource folders

right-click on templates and selectNew » HTML File. Name it hello.html. It will
give you a template template HTML file with a head and body. In the <body> section,
add this:

<h1>Hello from my template!</h1>

Now, restart the server again and reload the /hello page. You should see the “Hello
from my template” heading instead of the 500 error.

Right now, the model we’re passing is null:

new ModelAndView(null, "hello.html");

If we want to show some data in the template, we need to provide it there. We’ll use
a Java HashMap, which is just a way to associate a key with a value — in this case both
key and value will be strings. Within our response function:

HashMap<String,String> vars = new HashMap<>();

counter++;

vars.put("counter", Integer.toString(counter));

return new ModelAndView(vars, "hello.html");

With that code, we are exporting the Java variable counter into a template variable
also called counter. Now we can display the counter value by modifying our tem-
plate:

<h1>Hello from my template!</h1>
<p>This is access number {{counter}}</p>

The double-curly braces are the Handlebars syntax for plugging in a value.

6 of 7 Prof. League – Spring 2016 – Milestone 1

Session

Finally, we’ll experiment with the idea of a session. A session is a way to store some
data particular to one user’s browser. The server asks the browser to store a session
ID as a cookie. When the browser loads the next page on the site, it sends back the
session ID. In this way, the browser can keep track of who is accessing. (That’s what
it means to “log in” on a web site.) Spark has facilities for storing and retrieving data
associated with the session ID.

Let’s begin in your main program by adding a new response function for the /login
path. We’ll let the /login page take a query parameter called user, to specify
who is logging in. So you would access /login?user=Alice to log in as Alice, or
/login?user=Bob to log in as Bob. (We won’t bother with storing and checking
passwords at this stage.)

Here’s the code that would go in main, after your get statement for /hello:

get("/login", (request, response) -> {

String user = request.queryParams("user");

request.session(true);
request.session().attribute("user", user);

response.redirect("/");

return null;
});

In that code, we get the user parameter from the query string, then we initialize a
session at associate userwith the session. Finally we redirect to the home page, "/".

You can stop and restart the server, and access theURL http://localhost:4567/login?user=Candice
to test it out. Pretty much as soon as you hit enter, the URL will change back to the
home page. That’s the result of response.redirect. The home page, though, just
displays a 404 (not found) error.

So we need a home page. As with /hello, let’s create a HashMap and an index.html

template, and pass the session user name into the template:

get("/", (request, response) -> {

HashMap<String, String> data = new HashMap<String, String>();

String user = request.session().attribute("user");

data.put("username", user);

return new ModelAndView(data, "index.html");

}, new HandlebarsTemplateEngine());

Stop and restart, and now you’ll see the /login?user=Candice URL redirect to a
500 error. That’s because we don’t yet have the index.html template. Create it in the
right place, next to the hello.html template.

In the body, add this code:

CS164 – Software Engineering – LIU 7 of 7

{{#if username}}

Welcome, {{username}}.

Log out

{{else}}

You are not logged in.

<form method="get" action="/login">
<input type="text" name="user" value="">
<input type="submit" name="submit" value="Log in">

</form>

{{/if}}

Now if you restart and reload the home page, it should give you a “Welcome, Can-
dice” message with a link to log out. So finally we need to implement the logout.
We’ll do this just by removing the user attribute from the session data:

get("/logout", (request, response) -> {

request.session().removeAttribute("user");

response.redirect("/");

return null;
});

As before, we redirect back to the home page. This time, it will give you a login
form where you can type a user name. With this code, you can log out and log in as
different people to your heart’s content.

	Basic Spark project
	Response function
	HTML template
	Session

