
CS164 – Software Engineering – LIU 1 of 6

Figure 1: Sample Perceptron from this overview

Perceptrons

Basics

To begin exploring this area, we started with the simplest artificial neural networks,
known as perceptrons. This formulation began with McCulloch and Pitts in 1943.

We have a graph in which both nodes (circles) and edges (lines) are assigned real
numbers in some range, typically 0..1 or -1..+1, but other ranges can be used too.
Numbers assigned to nodes are called activation levels, and numbers assigned to
edges are called weights.

In this perceptron, let’s call the two input nodes (left layer) A and B, and the output
node is C. The upper edge weight will be wa and the lower edge weight is wb. The
main calculation is just a weighted average: C = A·wa + B·wb.

But thenwe also apply a function to the result, to adjust its range and kind of “snap” it
into a positive or negative result (activated or inactive). This function can be a simple
“step” with a given threshold t, such as t = 0.5 or t = 1.0:

f(x) =

{
0 if x < t

1 if x ≥ t

Later on, we may use a more sophisticated function that smooths out the disconti-
nuity at the threshold, like this one, called the Sigmoid function:

f(x) =
1

1+ e−x

It’s interesting to see if we canmake perceptrons emulate theBoolean logic operators,
like AND, OR, NOT, XOR. The perceptron above, with weightswa = 0.6 andwb =

0.6 implements OR:

http://toritris.weebly.com/perceptron-2-logical-operations.html

2 of 6 Prof. League – Spring 2017 – Perceptrons

Figure 2: Step function, with threshold t = 0. [Source]

Figure 3: The “logistic” sigmoid (formula above), centered on x = 0. [Wikimedia]

http://www.gnuplotting.org/defining-piecewise-functions/
https://commons.wikimedia.org/wiki/File%3ALogistic-curve.svg

CS164 – Software Engineering – LIU 3 of 6

Figure 4: XOR implementation with hidden layer

A B C = f(A*Wa + B*Wb)

0 0 f(0*0.6 + 0*0.6) = f(0) = 0

0 1 f(0*0.6 + 1*0.6) = f(0.6) = 1 (because 0.6 > t)

1 0 f(1*0.6 + 0*0.6) = f(0.6) = 1

1 1 f(1*0.6 + 1*0.6) = f(1.2) = 1

Here we’re using the step function with threshold t = 0.5.

We can implement Boolean AND with wa = 0.4 and wb = 0.4:

A B C = f(A*Wa + B*Wb)

0 0 f(0*0.4 + 0*0.4) = f(0) = 0

0 1 f(0*0.4 + 1*0.4) = f(0.4) = 0 (because 0.4 < t)

1 0 f(1*0.4 + 0*0.4) = f(0.4) = 0

1 1 f(1*0.4 + 1*0.4) = f(0.8) = 1 (because 0.8 > t)

XOR

Aproblem arises with the XOR function. Minsky and Papert showed that this simple
perceptron model cannot encode XOR. (And their influence set back research into
artificial neural networks for a decade or more!) A perceptron can model (and learn)
any function that is linearly separable, but XOR is not.

The trick to making this model more powerful is to add a “hidden” layer between
the input nodes and the output node. Then you fully-connect the nodes of the input
layer with those in the hidden layer. That produces a graph with five nodes and six
edges:

The threshold value for the step function is indicated by θ (theta). The work below
is by one of my graduate students, Priya.

4 of 6 Prof. League – Spring 2017 – Perceptrons

Figure 5: Full resolution

priya-xor.jpg

CS164 – Software Engineering – LIU 5 of 6

Implementation

At first I tried to simulate the delta rule in a spreadsheet – this worked for learning
AND,OR.When I tried to learnNANDusing a bias input, I wasn’t getting it towork.
Can you?

Here is the start of a Python implementation:

Perceptrons!

class TwoStepFun(object):

"""A step function with configurable threshold.

>>> 3+3

6

>>> f1 = TwoStepFun()

>>> f1.threshold

0.5

>>> f1(0.4)

0

>>> f1(0.6)

1

>>> f2 = TwoStepFun(1)

>>> f2(0.99)

0

>>> f2(-1.2)

0

>>> f2(1.001)

1

"""

def __init__(self, threshold=0.5):

self.threshold = threshold

def __call__(self, value):

if value < self.threshold:

return 0

else:
return 1

class Perceptron(object):

"""Represent a perceptron with 2 inputs, bias.

>>> p1 = Perceptron(TwoStepFun(1))

>>> p1.weights = [0.6, 0.6, 0.0]

>>> bits = [0,1]

https://docs.google.com/spreadsheets/d/1RzXyPpZg4Uw55cfpXX3RfRiGwFbi45akoz_-4UXPmuM/edit?usp=sharing

6 of 6 Prof. League – Spring 2017 – Perceptrons

>>> [p1(a,b) for a in bits for b in bits]

[0, 0, 0, 1]

>>> p2 = Perceptron(TwoStepFun(0.5))

>>> p2.weights = [0.6, 0.6, 0.0]

>>> bits = [0,1]

>>> [p2(a,b) for a in bits for b in bits]

[0, 1, 1, 1]

"""

def __init__(self, transfer):

from random import random

self.transfer = transfer

self.weights = [random()*4-2,

random()*4-2,

random()*4-2]

def __call__(self, x0, x1):

avg = (x0 * self.weights[0] +

x1 * self.weights[1] +

1 * self.weights[2])

return self.transfer(avg)

def learn(self, x0, x1, target):

pass #TODO

if __name__ == "__main__":

import doctest

doctest.testmod()

	Basics
	XOR
	Implementation

