
CS164 – Software Engineering – LIU 1 of 8

Figure 1: GitLab registration form

Software setup

We will need the following software set up on whatever computer(s) you plan to use
for this course. It should all work equally well on Mac, Windows, or Linux. These
are somewhat ‘bare bones’ instructions, so ask questions on the issue forum if you
encounter any problems.

Git setup

• ⇒ Video explanation [14:33]

Git is a version control tool that helps developers keep track of any changes that are
made to a set of files. We’ll also use it to submit and collaborate on assignments. You
may have heard of GitHub, a social code-sharing site. We’ll be using a similar site,
but on a private server.

1. Create an account at https://gitlab.liu.edu/ (the “Register” tab). You’ll have to
use your LIU email address to sign up. You should receive the confirmation link
within a few minutes, otherwise check your junk folder too. After completing the
registration, you can set a different email address in your profile, if you prefer.

2. Download the Git tool for your platform at https://git-scm.com/downloads and
run the installer. The default settings should be fine.

v/2017-01-27-git-setup.html
https://gitlab.liu.edu/
https://git-scm.com/downloads


2 of 8 Prof. League – Spring 2018 – Software setup

3. Open the Git Bash application on Windows, or use Utilities » Terminal on Mac.
Type these commands, replacing your actual name and email address in the double
quotes:

git config --global user.name "YOUR NAME"

git config --global user.email "YOUR.ADDRESS@EXAMPLE.COM"

4. If you know you already have an SSH key pair, you can skip this step. Otherwise,
in the Git bash terminal enter ssh-keygen. You’ll press enter for all the defaults,
including an empty passphrase. It should go something like this:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/c/Users/league/.ssh/id_rsa):

Created directory '/c/Users/league/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /c/Users/league/.ssh/id_rsa.

Your public key has been saved in /c/Users/league/.ssh/id_rsa.pub.

The key fingerprint is:

b7:27:3e:8d:83:df:9a:21:c7:27:0d:fa:43:ac:d0:7e league@WIN7

5. Now you’ll want to access the public part of the key that it generated. It’s easiest to
open it in a text editor, using:

• OnWindows: notepad .ssh/id_rsa.pub

• On Mac: open -e .ssh/id_rsa.pub

• On Linux: cat .ssh/id_rsa.pub

The editor will pop up with a line that begins ssh-rsa AAAA… copy the whole thing
onto your clipboard.

6. Log in to your gitlab.liu.edu account. From your user icon in the upper right, select
Settings, then SSH Keys. Paste your public key into the big text box, then use the
green button Add SSH Key. The title should populate automatically when you click
it. If not, just enter “my key” or a nickname to identify your computer, like “my Dell
laptop.”

7. Use the upper left menu to go back to your projects list. Click the greenNewProject
button. In the project path box, leave the drop-down set to your username, but
enter your last name followed by -CS164 (no spaces) for the project name. Keep the
visibility level private, then confirm with the green Create Project button.

8. Your new project page will say “The repository for this project is empty.” Click the
adding a README link below that. You’ll be placed in a text editor with the title
README.md. Type your name and something about yourself:

https://gitlab.liu.edu/


CS164 – Software Engineering – LIU 3 of 8

Figure 2: Add new README file

Figure 3: Specify message and commit changes

9. Below the editor is space for a Commit message. In that box, type something like
“Created README,” (it may already be filled for you) and then click the green Com-
mit Changes button.

10. Next, while looking at your project page, click the Settings (gear icon) in the left
sidebar, then select Members. In the Search for members box, type league and
select the user just named league, with my picture. Change the permissions drop-
down to Developer and then click the green Add to Project button.

Clone and sync

Now we’ll use the installed Git system to connect a folder on your machine to your
new project on the GitLab server.



4 of 8 Prof. League – Spring 2018 – Software setup

Figure 4:

11. Decide where you want the folder to live, such as in your Desktop or Documents
folder. Open up Git Bash (Windows) or Utilities » Terminal (Mac) and go to your
selected directory using the cd command:

cd Desktop

12. On your GitLab project page, find the ssh://git address and copy that entire thing
to your clipboard. (The button just to its right will probably work.)

13. Back in your bash/terminal, type git clone and then paste in the URL. (On Win-
dows, control-V may not work to paste, but there should be a paste option on the
right-click menu.)

After the address, add another space and then the name of the new folder that will
be synchronized. I’d recommend just naming it after the course (CS164 or maybe
CS164-repo).

Here’s the complete command (your address will differ):

git clone ssh://git@gitlab.liu.edu:4000/USER/NAME-CS164.git CS164

Hit enter. Here’s a transcript of what will happen:

Cloning into 'CS164'...

remote: Counting objects: 3, done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (3/3), done.

Now you have a new folder containing your README.md.

14. Descend into that new folder in your terminal, using cd:

cd CS164



CS164 – Software Engineering – LIU 5 of 8

15. Use an editor on your system to make some kind of change to the README.md. If I’ve
recommended an IDE to you, you can do it there. Or you can install one of these:

• OnWindows: Notepad++
• On Mac: Sublime Text
• On Linux: gedit

Just add another sentence or so to the file.

16. Git will be able to detect the change you made, and then you can snapshot it (called
a commit) and synchronize it with the project on the GitLab server (called pull and
push). The sections below describe how, either using purely the command-line, or
using a GUI. Choose one, or try both.

Using just command line

• ⇒ Video explanation [12:56]

17. First I try to orient myself using the command git status. It outputs:

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

Whichmeans it recognized mymodification to the file. To see exactly what changed
within the file, you can optionally do git diff. It outputs:

diff --git a/README.md b/README.md

index e69de29..18249f3 100644

--- a/README.md

+++ b/README.md

@@ -0,0 +1 @@

+Hello world.

Theplus signs indicate lines added (usually green), minus signs indicate lines deleted
(usually red).

18. Now we specify what changes to include in this commit (snapshot):

git add README.md

https://notepad-plus-plus.org/
https://www.sublimetext.com/
v/2017-01-27-git-sync.html


6 of 8 Prof. League – Spring 2018 – Software setup

You can specify multiple files at once, just separate them with spaces. If there are
new files you created and want to commit, you would specify them there too.

Once you add the file, they are “staged” for commit, and another git status (op-
tional) will report that.

19. Now we tell it to create the commit. Each commit automatically includes a times-
tamp and your name and email address. (You provided them earlier, using git

config.) But you also have to specify a “commit message” – a short piece of text that
describes what you changed, or what you’re committing. The complete command is
like this:

git commit -m "Added another sentence to README"

The output is something like:

[master 5b611c8] Added another sentence to README

1 file changed, 1 insertion(+)

That hexadecimal number beside master (in my case, 5b611c8, but yours will be
different) identifies the commit. Optionally, you can see a history of the commits
using git log.

20. A snapshot of your files has been saved locally, but it’s not yet available on the GitLab
server. To synchronize with the server, I recommend this compound command:

git pull && git push

The pull portion brings down any changes on the server that you don’t have locally.
And then – only if that succeeds – it will push your local changes up to the server.

The pull could fail if there is a conflict – changes on the server that interfere with
changes that you’ve made locally, in the same files. If that happens, you will have to
fix the conflicts locally, add the changes, commit again, and then try to synchronize
again.

21. Assuming the push succeeds, you should be able to visit the project page on GitLab
and see the updated README file.

Using the built-in GUI

22. To start using the built-in GUI on your local repository, make sure you are in the
correct directory, and then run:

git gui&



CS164 – Software Engineering – LIU 7 of 8

Figure 5: The built-in GUI

The GUI window shows the current status. In the screenshot above, we have one
file modified, and it already shows the differences. Plus signs indicate lines added (in
green), and minus signs indicate lines deleted (in red).

23. To specify what changes to include in this commit (snapshot), we need tomove them
to the “Staged Changes” section (lower left). You select one or more files in the Un-
staged Changes and double-click them or use Commit » Stage to Commit from the
menu, or press Ctrl-T.

If there are new files you created and want to commit, you would stage them too.

24. Each commit automatically includes a timestamp and your name and email address.
(You provided them earlier, using git config.) But you also have to specify a “com-
mit message” – a short piece of text that describes what you changed, or what you’re
committing. Type your commit message into the box in the lower right.

Then you can hit the Commit button. The status bar at the bottom of the window
will say “Created commit 5b611c8” or similar. That hexadecimal number (yours will
be different) identifies the commit.

Optionally, you can see a history of the commits by selecting Repository » Visualize
All Branch History from the menu.

25. A snapshot of your files has been saved locally, but it’s not yet available on the GitLab
server. To synchronize with the server, I’d first recommend fetching andmerging any
changes:



8 of 8 Prof. League – Spring 2018 – Software setup

• Use Remote » Fetch from » origin, and then if it reports any changes,
• UseMerge » Local Merge.

The fetch brings down any changes on the server that you don’t have locally. The
merge portion could fail if there is a conflict – changes on the server that interfere
with changes you’ve made locally, in the same files. If that happens, you will have to
fix the conflicts locally, add the changes, commit again, and then try to synchronize
again.

Next, you can hit the Push button next to the commit message box, and confirm it
in the following dialog.

26. Assuming the push succeeds, you should be able to visit the project page on GitLab
and see the updated README file.


	Git setup
	Clone and sync
	Using just command line
	Using the built-in GUI


