
CS164 Software Engineering – LIU 1 of 5

2019-05-06 22:55
1a0f14a

SDLC

Contents

Software Development Lifecycle
1. Analysis = Gathering and document requirements

2. Design = System architecture: components/modules

3. Implementation = Code the modules

4. Testing = Veriˋcation that they meet the speciˋcation

5. Maintenance = Any evolution after initial deployment

Waterfall process for software dev
• Do each phase in order

• Each completes before starting next phase

• Outputs of one phase are inputs to next phase



2 of 5 Prof. League – Spring 2019 – SDLC

Cost of change over time

Co
st

 o
f c

ha
ng

e

Time

Analysis

Design
Implementation

Testing
Maintenance

Incremental and iterative processes
• Spiral model [B.Boehm]

• Agile methods [K Beck, W Cunningham, …]

A few agile techniques

Pair programming

• 2 devs, 1 keyboard, writing code together

• The best debugging is never “embugging” in the 1st place

Test-driven development

• Write test ˋrst, then write code to pass the test.

“Sprints” = deˋnes what the increment is

• “Product owner” decides what features go into the next iteration.

• We have a deˋned timeline: ~3 weeks.



CS164 Software Engineering – LIU 3 of 5

Analysis
Gathering and documenting requirements.

• Identify the stakeholders.

– Users of system. Also there can be different categories of users:

– Administrative users, end users, power users

– Investors/owners

– Dev staff, incl maintenance/operations

• Functional requirements

– What the system has to DO

– “Functionality”

• vs Non-functional requirements

– Constraints on the development/operation of system

– aka the “-ilities”

– Reliability

– Availability (“uptime”)

– Usability = “user-friendly”

– Consistency

– Applicability

– Efˋciency

– Utility

– Readability

– Maintainability

– Vulnerability (security)

– Scalability = How much data/ how many users can it support?

Want requirements to be speciˋc, realistic, testable.

Part of being speciˋc is that they should be quantiˋed (especially the ilities). Here are
some examples of quantiˋcation

• Availability: 99% vs 99.9% vs 99.99% “nines”

• Usability: what kind(s) of users, how long should it take them to become
proˋcient?

• Efˋciency: eg, process N GB data inM seconds



4 of 5 Prof. League – Spring 2019 – SDLC

Design
• Modularity

• Separation of concerns

• Strong coupling (bad) vs Loose/Weak coupling (good)

Veriˋcation / validation
• Veriˋcation = conformance to a speciˋcation. Does it meet the spec?

• Validation = Does it meet the need?

• Veriˋcation

– Dynamic veriˋcation (aka Testing) = Run the system to see what it does.

– Static veriˋcation (aka Inspection). Code reviews.

– Automation

Misc



CS164 Software Engineering – LIU 5 of 5

Figure 1: @m_lukaszewski on Twitter

https://twitter.com/m_lukaszewski/status/1091630873315893248

