
CS164 Software Engineering – LIU 1 of 2

2019-05-06 22:55
1a0f14a

1git-scm.com
/book/en/v2

2hackernoon.c
om/https-med
ium-com-zsp
ajich-under
standing-git
-data-model
-95eb16cc99f
5

3gumroad.com/
l/oh-shit-g
it

4www.metaltoa
d.com/blog/b
eginners-gui
de-git-bisec
t-process-e
limination

Version control

Contents

Git resources
• Pro Git1 book by Scott Chacon. Available online (gratis) or paper. I suggest
working through at least chapters 1–3. We’ll also pick up some things from
chapters 7–8 later in the course.

• Understanding Git Data Model2 article by Zvonimir Spajic. Great intro to the
three types of objects: blobs, trees, and commits. Part of a series.

• Oh Shit, Git!3 is a fun overview and printable cheat sheet/booklet available for
$10. (There’s also a version without explicit language, if you prefer.)

• Beginner’s Guide to git bisect4 by Tony Rost. Incidentally, here’s the
invocation that I used to automate the search:

git bisect run sh -c ”! grep --count car test.txt”

It would be run after doing start andmarking the initial good and bad commits.

Figure 1: xkcd on git commit messages

Purpose
• We have ˋles that represent code, conˋguration, documentation.

• Need tools to manage modiˋcations

• Team environment means that multiple devs may edit the same ˋle(s). Need to
be careful about integrating changes.

https://git-scm.com/book/en/v2
https://hackernoon.com/https-medium-com-zspajich-understanding-git-data-model-95eb16cc99f5
https://medium.com/@zspajich
https://gumroad.com/l/oh-shit-git
https://www.metaltoad.com/blog/beginners-guide-git-bisect-process-elimination
https://xkcd.com/1296/

2 of 2 Prof. League – Spring 2019 – Version control

• However, VC even useful for a lone developer: to see previous versions, undo
changes, redo, manage different conˋgurations, etc.

History
Although git’s model of snapshot-based, concurrent, and distributed version
management is now dominant, it can be useful to understand some of the other design
points that were used in the past.

Snapshots vs deltas

• One way that VC tools differ: do they manage snapshots of your ˋles, or do they
manage changes (aka deltas or diffs) to ˋles?

– Either store original and forward deltas,

– Or store most recent and reverse deltas.

• Git (and friends) instead store snapshots – every version of every ˋle. Faster to
ˋnd old versions compared to applying deltas.

• Does take up more space than delta-based versions. Can use compression to
reduce space.

Centralized vs distributed

• Centralized means there’s some designated server that keeps all the history.

• Centralized also means browsing the history or adding to it requires network
access to the server.

• Distributed means each developer has their own copy of the entire history.

• Distributed also means I can work while disconnected and then later push/pull.

• A distributed VC can also be a much-improved centralized VC.

• GitHub/GitLab are central servers for a distributed tool.

Winner: snapshots and distributed

• git (free/OSS) – GitHub (commercial)

• mercurial

• bzr “bazaar”

• BitKeeper

