CS168 Special Topics: Functional Programming - LIU 1 of

Assignment 5 Nl

BY SA
2019-12-11 15:44
08d925d

due Tue 8 Oct

module AO5 where
impoxrt Control.Monad

- These declarations below are called "type synonyms.” They say we're
going to represent user names and passwords as strings, but we can
use the type ‘'User’' interchangeably with 'String’.

-f

type User = String
type Passwoxrd = String

- Here is an enumeration of the different kinds of errors that can
occur in a financial account transaction.

-§

data Exror
= UnknownUser
| IncorrectPassword
| InsufficientFunds
dexriving (Eq, Show)

- To represent an account, we'll just pair an account password with its
balance (in dollars).

-f

data Account = Account
i password :: Passwoxd
, balance :: Int

3

deriving Show

- TODO: complete this helper function for modifying the balance field
within an account object. Here's an example of how it should work:

ghci> modifyBalance (+10) (Account "secret” 70)
Account {password = "secret”, balance = 80}%

2 ofE Prof. League - Fall 2019 - Assignment 5

-f

modifyBalance :: (Int -> Int) -> Account -> Account
modifyBalance adj acct = exroxr "TODO”

{- Here is a little "database” of account data for a few users.

-f

bank :: [(User, Account)]

bank = [("alice”, Account "$113" 350),
("bob", Account "bO1!" 290),
("chad”, Account "c9K2"” 700),
("dora”, Account "3xpM” 980)]

- TODO: Retrieve the named account from the database, or report the
"UnknownUser’ error. (Note that the function uses an ‘Either’ type,
so you'll have to report the error tagged with 'Left', or the
desired account with 'Right’. You may want to use the built-in
function ‘lookup', which is helpful for treating a list of pairs as
a lookup table. It returns a ‘Maybe’ result, so you'll have to
match on that and convert to 'Either’.

-f

getAccount :: User -> Either Error Account
getAccount user = error "TODO”

- In addition to retrieving the named account (for which it can call
‘getAccount), this function should verify whether the specified
password matches what was in the database. If it matches, it should
return the account tagged with 'Right’, otherwise it should return
"IncorrectPassword’ tagged with ‘Left'. (It can also report
"UnknownUser'.) Examples:

ghci> authenticate "barb” "secret”

Left UnknownUser

ghci> authenticate "bob” "secret”

Left IncorrectPassword

ghci> authenticate "bob” "b01!"”

Right (Account {password = "b0O1!"”, balance = 290%)

-f

authenticate :: Usexr -> Password -> Either Exrror Account

CS168 Special Topics: Functional Programming - LIU 3 ofE

authenticate user pw = exxox "TODO”

- After authenticating (for which it should call ‘authenticate’), this
function should modify the balance by adding the indicated amount,
and then return the account record tagged with "Right'. (It can
still fail, with ‘UnknownUser' or 'IncorrectPassword’ .) You can use
the 'modifyBalance’ helper to change the balance field. Example:

ghci> deposit “mob” "b0O1!” 90

Left UnknownUser

ghci> deposit "bob” "b0O1!"” 90

Right (Account {password = "b0O1!"”, balance = 380%)

-f

deposit :: User -> Password -> Int -> Either Error Account
deposit user pw amt = exxox "TODO”

- This one is very similar to ‘deposit’', but it can additionally report
the error 'InsufficientFunds', so that the account balance never
becomes negative. Examples:

ghci> withdraw "alice” "secret” 100
Left IncorrectPassword
ghci> withdraw "alice” "$113” 100
Right (Account {password = "$113"”, balance = 250%)
ghci> withdraw “alice” "$113” 400
Left InsufficientFunds
-f

withdraw :: User -> Password -> Int -> Eithexr Error Account
withdraw user pw amt = exroxr "TODO”

