
CS168 Special Topics: Functional Programming – LIU 1 of 3

2019-12-11 15:44
08d925d

Assignment 5

due Tue 8 Oct

module A05 where

import Control.Monad

{- These declarations below are called ”type synonyms.” They say we're
going to represent user names and passwords as strings, but we can
use the type `User` interchangeably with `String`.

-}

type User = String
type Password = String

{- Here is an enumeration of the different kinds of errors that can
occur in a financial account transaction.

-}

data Error
= UnknownUser
| IncorrectPassword
| InsufficientFunds
deriving (Eq, Show)

{- To represent an account, we'll just pair an account password with its
balance (in dollars).

-}

data Account = Account
{ password :: Password
, balance :: Int
}
deriving Show

{- TODO: complete this helper function for modifying the balance field
within an account object. Here's an example of how it should work:

ghci> modifyBalance (+10) (Account ”secret” 70)
Account {password = ”secret”, balance = 80}



2 of 3 Prof. League – Fall 2019 – Assignment 5

-}

modifyBalance :: (Int -> Int) -> Account -> Account
modifyBalance adj acct = error ”TODO”

{- Here is a little ”database” of account data for a few users.
-}

bank :: [(User, Account)]
bank = [(”alice”, Account ”$l13” 350),

(”bob”, Account ”b01!” 290),
(”chad”, Account ”c9K2” 700),
(”dora”, Account ”3xpM” 980)]

{- TODO: Retrieve the named account from the database, or report the
`UnknownUser` error. (Note that the function uses an `Either` type,
so you'll have to report the error tagged with `Left`, or the
desired account with `Right`. You may want to use the built-in
function `lookup`, which is helpful for treating a list of pairs as
a lookup table. It returns a `Maybe` result, so you'll have to
match on that and convert to `Either`.

-}

getAccount :: User -> Either Error Account
getAccount user = error ”TODO”

{- In addition to retrieving the named account (for which it can call
`getAccount`), this function should verify whether the specified
password matches what was in the database. If it matches, it should
return the account tagged with `Right`, otherwise it should return
`IncorrectPassword` tagged with `Left`. (It can also report
`UnknownUser`.) Examples:

ghci> authenticate ”barb” ”secret”
Left UnknownUser
ghci> authenticate ”bob” ”secret”
Left IncorrectPassword
ghci> authenticate ”bob” ”b01!”
Right (Account {password = ”b01!”, balance = 290})

-}

authenticate :: User -> Password -> Either Error Account



CS168 Special Topics: Functional Programming – LIU 3 of 3

authenticate user pw = error ”TODO”

{- After authenticating (for which it should call `authenticate`), this
function should modify the balance by adding the indicated amount,
and then return the account record tagged with `Right`. (It can
still fail, with `UnknownUser` or `IncorrectPassword`.) You can use
the `modifyBalance` helper to change the balance field. Example:

ghci> deposit ”mob” ”b01!” 90
Left UnknownUser
ghci> deposit ”bob” ”b01!” 90
Right (Account {password = ”b01!”, balance = 380})

-}

deposit :: User -> Password -> Int -> Either Error Account
deposit user pw amt = error ”TODO”

{- This one is very similar to `deposit`, but it can additionally report
the error `InsufficientFunds`, so that the account balance never
becomes negative. Examples:

ghci> withdraw ”alice” ”secret” 100
Left IncorrectPassword
ghci> withdraw ”alice” ”$l13” 100
Right (Account {password = ”$l13”, balance = 250})
ghci> withdraw ”alice” ”$l13” 400
Left InsufficientFunds

-}

withdraw :: User -> Password -> Int -> Either Error Account
withdraw user pw amt = error ”TODO”


