
CS168 Special Topics: Functional Programming – LIU 1 of 2

2019-12-11 15:44
08d925d

Assignment 6

due Tue 15 Oct

module A06 where

{- For this assignment, we'll write some functions using the following
tree data type, which stores elements at every node, and then uses an
'Empty' constructor to represent the end of a branch.
-}

data Tree a
= Empty
| Branch a (Tree a) (Tree a)
deriving Show

{- Here's an example balanced tree: corresponding to this
crude ASCII diagram:

(a)
/ \
/ \

/ \
(b) (d)

/ \ / \
* (c) (e) *

/ \ / \
* * * *

-}

t1 :: Tree Char
t1 = Branch 'a' (Branch 'b' Empty (Branch 'c' Empty Empty))

(Branch 'd' (Branch 'e' Empty Empty) Empty)

{- TODO: this should determine the total number of data elements
stored in a tree, so for t1 that would be 5.

-}

treeSize :: Tree a -> Int
treeSize _ = 0



2 of 2 Prof. League – Fall 2019 – Assignment 6

{- TODO: this should map a function over each element of a tree,
keeping the same structure.

-}

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree _ _ = error ”TODO”

{- TODO: this converts a tree to a list of values, where ”preorder”
means the node should come BEFORE its left, and then its right. So
for t1, that produces ”abcde”.

-}

preOrderList :: Tree a -> [a]
preOrderList _ = []

{- TODO: same idea, but now ”inorder” which means the left side comes
first, then the current node, then the right side. So for t1, that
produces ”bcaed”.

-}

inOrderList :: Tree a -> [a]
inOrderList _ = []

{- TODO: height of a tree is the length of the longest path from root to
an Empty node. (Empty itself has height zero.)
-}

treeHeight :: Tree a -> Int
treeHeight _ = 0

data Direction = GoLeft | GoRight
deriving Show

type Path = [Direction]

{- TODO: Finally, try to recreate the find function for this type of
tree. It returns Just with a list of directions for getting to the
requested value, or Nothing if it's not in the tree.

-}

findInTree :: Eq a => a -> Tree a -> Maybe Path
findInTree _ _ = Nothing


