
CS168 Special Topics: Functional Programming – LIU 1 of 4

2019-12-11 15:44
08d925d

Assignment 10

due Tue 26 Nov

module A10 where

import Test.QuickCheck

-- This will be a program to represent integers as strings of binary
-- digits, so this produces a single bit 0 or 1, depending on whether
-- the integer is even or odd.

bit :: Integer -> Char
bit k = if even k then '0' else '1'

-- Convert an integer to a string of bits. Give this a test! Here are
-- some working examples:
-- intToBinary 10 --> ”1010”
-- intToBinary 15 --> ”1111”
-- intToBinary 17 --> ”10001”
-- intToBinary 18 --> ”10010”

intToBinary :: Integer -> String
intToBinary k = reverse (loop k)

where
loop 0 = []
loop n = bit n : loop (n `div` 2)

-- Convert a string of bits to an integer, assuming it's well-formatted,
-- or Nothing if it's not a valid bit string.
-- binaryToInt ”10010” --> Just 18
-- binaryToInt ”1001101” --> Just 77
-- binaryToInt ”z100 10” --> Nothing

binaryToInt :: String -> Maybe Integer
binaryToInt str = loop 1 (reverse str)

where
loop _ [] = Just 0
loop k (b:bs) = do

n <- loop (k*2) bs
case b of

2 of 4 Prof. League – Fall 2019 – Assignment 10

'0' -> Just n
'1' -> Just (k+n)
_ -> Nothing

-- Here's a QuickCheck property for starting with an integer and doing
-- a round-trip to binary. The triple-equals (===) tests equality, but
-- also allows QuickCheck to print both sides whenever there's a
-- failure. Run it like this:
-- �> quickCheck toBinaryRoundTrip
-- +++ OK, passed 100 tests; 107 discarded.

toBinaryRoundTrip :: Integer -> Property
toBinaryRoundTrip i =

i > 0 ==>
binaryToInt (intToBinary i) === Just i

-- TODO #1: The precondition i > 0 in the above property is there
-- because the intToBinary actually fails on negative numbers. It
-- generates an infinite loop!
-- �> intToBinary (-4)
-- ”Interrupted. -- I had to hit Control-C
--
-- So try to fix intToBinary to do something reasonable for negative
-- numbers. We're not going to attempt to do a two's-complement
-- representation, but instead we'll just prefix the string with a
-- minus sign. So here's what the correct behavior would look like:
-- �> intToBinary (-4)
-- ”-100”

-- TODO #2: Once negatives are fixed in intToBinary, you can comment
-- out the ”i > 0 ==>” in the property. Then you should find that
-- quickCheck toBinaryRoundTrip generates negative numbers as
-- counter-examples:
-- �> quickCheck toBinaryRoundTrip
-- *** Failed! Falsifiable (after 4 tests):
-- -1
-- Nothing /= Just (-1)
--
-- So the solution is to revise binaryToInt so that it can accept the
-- negative sign.

CS168 Special Topics: Functional Programming – LIU 3 of 4

-- Next we have the QuickCheck property for starting from a string and
-- trying a round-trip. However, using this with the regular QuickCheck
-- means it will mostly try things that are not valid bit strings:
-- �> quickCheck fromBinaryRoundTrip
-- *** Failed! Falsifiable (after 3 tests and 2 shrinks):
-- ”a”
-- Nothing /= Just ”a”

fromBinaryRoundTrip :: String -> Property
fromBinaryRoundTrip s =

(intToBinary <$> binaryToInt s) === Just s

-- So here's a special string generator that only generates valid bit
-- strings. You can try it like this:
-- �> sample genBits
-- ”0”
-- ”1”
-- ”101”
-- ”1000”
-- ”100011101”
-- (etc)

genBits :: Gen String
genBits = fix . map bit <$> arbitrary

where
fix [] = ”0”
fix ('0':s) = ”10” ++ s
fix s = s

-- The 'fix' function makes sure that the string isn't empty, and that
-- it doesn't start with leading zeroes (unless it's JUST 0).

-- TODO #3: You can run a test incorporating the genBits generator like
-- this:
--
-- �> quickCheck (forAll genBits fromBinaryRoundTrip)
-- *** Failed! Falsifiable (after 1 test):
-- ”0”
-- Just ”” /= Just ”0”
--
-- And you may find that it flags the string ”0” as a counter-example!
-- The problem is that intToBinary 0 produces ”” (the empty string)

4 of 4 Prof. League – Fall 2019 – Assignment 10

-- rather than ”0” as we had initially. Try to fix that!

main :: IO ()
main = do

putStrLn ”TEST int <-> binary”
quickCheck toBinaryRoundTrip
putStrLn ”TEST binary <-> int”
quickCheck (forAll genBits fromBinaryRoundTrip)

