
CS 128/633 – System Analysis & Design – LIU 1 of 6

Practice Exam—with answers
Monday 19 December 2011

Choose four out of the five questions. You have two hours, if you need it. Write your
answers on separate sheets of paper, with your name on each sheet and the problem
number clearly labeled. You may not use books, notes, computers, or other devices. You
may leave when you have completed the exam.

1. (Requirements) Examine the state/transition diagram below and answer the following
questions.

Requested

Confirmed On waiting list

Used Canceled

Archived

pay

move in cancel give up

room
available

not availableroom available

request room (a) According to the diagram, is every con-
firmed hotel room eventually paid for?
Explain.

(b) Is every request eventually confirmed?
Explain.

(c) Suppose this is an expensive hotel that
hosts presidents and other heads of state.
Every guest must pass a background
check before they can move in; those
that fail are kept ‘waiting’ indefinitely.
Change the state diagram to reflect this
new policy.

The key to these is to answer directly from the diagram, adding as little of your own
interpretation as possible. Remember, in a state/transition diagram, the states are
represented by boxes, and the transitions are represented by arrows. The direction
of the arrows is important. The transitions are also known as actions, so they are
generally described by verbs.

(a) The keywords in this question are ‘confirmed’ (which is a state), and ‘paid’, which
is an action. So really the question asks: is there any path from the confirmed state
to the end (the double circle) that does not pass through the pay action? Of course,
there is such a path. The roomcan be canceled instead, and then nopayment occurs.

(b) Again, find the keywords: ‘request’ is an action (leading to the ‘requested’ state)
and ‘confirmed’ is a subsequent state. According to the diagram: no, not every re-
quest is eventually confirmed. The room might not be available, and then the client
might ‘give up’ instead of waiting.

2 of 6 Prof. League – Fall 2011 – Practice Exam — with answers

(c) A background check is an action. The resulting state could be something like
‘Cleared’ or ‘Secure’. Wemust have this beforemoving in, which is another action, and
we have to make sure there is no loophole that allows us to bypass the background
check.

Requested

Confirmed On waiting list

Used Canceled

Archived

pay

move in cancel give up

room
available

not availableroom available

request room

Cleared

pass
background check

Indefinite
wait

fail
background check

give up

Ifwehadplaced thebackgroundcheckdirectlybetween ‘Requested’ and ‘Confirmed’,
then the waiting list may have become a loop-hole. Here, we only allow cleared
guests onto the waiting list.

From the ‘indefinite wait’ state, where we put clients with failed background checks,
there is no path back to the ‘move in’ action.

CS 128/633 – System Analysis & Design – LIU 3 of 6

2. (Design) Recall that cohesion is a measure of how well the various responsibilities and
methods of a class fit together. A class with poor cohesion can usually be refactored into
multiple classes.

Data cohesion is one kind of cohesion, where we evaluate what data members each
method accesses, to see what the methods have in common.

e following class has two data members and five methods. Analyze the data cohesion
of the class, and recommend a possible way to refactor it.

1 class BankAccount
2 {
3 private int balance;
4 private String owner;
5

6 public void withdraw(int amount) {
7 balance = balance - amount;
8 }
9

10 public void deposit(int amount) {
11 withdraw(- amount);
12 }
13

14 public void getOwner() {
15 return owner;
16 }
17

18 public void setOwner(String newOwner) {
19 sendNotification(owner);
20 sendNotification(newOwner);
21 owner = newOwner;
22 }
23

24 public void sendNotification(String recipient) {
25 // ...
26 }
27 }

There are clearly two different types of functionality offered by this class, and they
correspond exactly to the two data members.

For the ‘balance’ attribute, we have methods ‘withdraw’ and ‘deposit’.

For the ‘owner’ attribute, we have methods ‘getOwner’, ‘setOwner’, and ‘sendNotifi-
cation’. It’s probably reasonable to break these into two separate classes, and then
each class would have much better cohesion, compared to this one: their responsi-
bilities would be more focused.

I’d probably continue to call the ‘balance‘ class ‘BankAccount’, but I’d break out a sep-
arate ‘AccountOwner’ class.

4 of 6 Prof. League – Fall 2011 – Practice Exam — with answers

3. (Implementation) Briefly describe how the branching and merging features of a version
control system can be helpful to soware developers.

Branching is great when we need to continue development of different versions of
the system in parallel. For example, suppose we just released version 1.0 of a soft-
ware product. Our development team may then get started working on brand new
features for version 1.1. (New features usually go onto the main branch, which is
called the ‘trunk’.) Meanwhile, bug reports arrive from our customers in the field. We
can’t just release version 1.1 before it’s ready, and they can’t wait very long for those
bug fixes. So, we use a release branch to fix the bugs in 1.0, and when they’re ready,
we can release version 1.0-1 from that branch.

We also might periodically merge relevant bug fixes from the release branches back
into the trunk.

This sort of structure also happens with experimental branches, where a developer
mightwant towork on awild idea thatmay ormay notmake it into the final product.
If the idea doesn’t work out, then we just abandon the branch (but it is always there
in the repository). If it does work out, we can eventually merge the contents of that
branch into the trunk for the next release.

CS 128/633 – System Analysis & Design – LIU 5 of 6

4. (Verification) As a test engineer for Boeing, you have been assigned to test the following
pseudo-code. It has two parameters, altitude and pitch.¹

01: FUNCTION autoPilot (altitude, pitch : integer)
02: BEGIN
03: IF altitude > 10000 AND pitch < 0
04: THEN RETURN pitch / 2
05: ELSE IF altitude > 5000 AND pitch < 70
06: THEN RETURN pitch * 0.3
07: ELSE IF pitch < -25
08: THEN RETURN (- pitch) / 2
09: ELSE RETURN altitude + pitch
10: END

Your colleague suggests the following three test cases. Each case contains proposed in-
puts (values for altitude and pitch) and the expected output (return value).

test case # altitude pitch return
1 10384 70 10454
2 986 –32 16
3 768 0 768

Do these three test cases produce good coverage? If not, suggest one or two additional
cases thatwillmake your testingmore comprehensive. (Be specific: give proposed inputs
and expected output.)

(I added line numbers to the program, and identifying numbers to the test cases, so
we can talkmore explicitly about coverage.) The key here is to trace the code for each
test case. Line 3 begins with the expression about altitude and pitch. For test case 1,
is it true or false? Altitude is greater than 10000, but pitch is > 0, so on the whole this
conditions is false. That means we jump to the ‘ELSE’ on line 5. Is that condition true
or false? Altitude is over 5000, but pitch is not < 70, so false. Jump to ‘ELSE’ on line
7. Is pitch less than−25? No. So we’re on to the ‘ELSE’ at line 9 and return altitude +
pitch == 10454, as expected.

That first test visited (covered) lines 3, 5, 7, and 9. It skipped 4, 6, 8.

Continue this reasoning with the other test cases. Test case 2 covers lines 3 (false), 5
(false), 7 (true), 8.

Test case 3 covers lines 3 (false), 5 (false), 7 (false), 9.

Did we hit every significant line of code? (Lines 1, 2, and 10 are not really relevant.)
No! We never executed line 4 or line 6! So we have to find at least two more test
cases:

Test 4: altitude=10002, pitch=-4, return -2 (hits line 4)
Test 5: altitude=6000, pitch=50, return 15 (hits line 6)

¹It doesn’t matter to this problem, but altitude is the distance of a plane off of the ground, and pitch is
the angle of the nose with respect to the ground.

6 of 6 Prof. League – Fall 2011 – Practice Exam — with answers

5. (Maintenance) e first law of soware evolution² states that “a program that is used
undergoes continual change or becomes progressively less useful.” Do you agree with
this statement? It’s not obviously true – if the program was useful at one time, why
would it not continue to be useful into the future? Explain, and give concrete examples
of systems for which you think the law is and is not true.

This one is pretty subjective, so as long as you answer thoughtfully about some of
the issues below, you’d get full credit.

The main reason that unmaintained software becomes progressively less useful is
because the environment around us is always changing. Eventually these changes
impact the requirements for the software.

We can place these ‘environmental’ changes in a few different categories. In many
fields, there are laws and regulations that evolve every few years, and so unmain-
tained software in those fields will eventually find itself out of date with respect to
our expectations.

The hardware on which the system runs, and other software it depends on (like the
operating system and various libraries) are also changing. Your old machine won’t
last forever, but if the software is unmaintained, will it continue to run on a new ma-
chine?

Our expectations changeover time too. Once itwasokay for certain kindsof software
to be unaware of the Internet, but now the net is so pervasive that those programs
have limited appeal.

All that said, there may be examples where software remains useful for a long time,
even as theworld around it changes. If youneed a system todo simple numerical cal-
culations, well, the mathematics you’re using probably hasn’t changed in hundreds
of years!

²formulated in a 1974 article by Lehman and Belady

