
sa tr> O

O f f , c n i - r t

pn ff 3 ,o
to'n 3 3TO

ft)n IS TO
ff o (T) <
t/> *—~1 M 1 -^ TO TO oTO 8 ~
o' (/)o

H i3
C/)n
1' 3' <fTO

Cn TO
03

3"
On B

M < * i J —(' i—i TO <

-w o ff P- .

to r ^ a05 ff" if ™ IT £ ^ 5 ° s
is chapter, we will p

tudy that explored tlme diverse and imp
i
o
pcn
2
TO
t-n
&3

PTO
i - tf f
3

£ 8 f f' —• — r - r

. 3 O

1.2.)pens
p^ <: ff [3to'tvj

p s
5 3cn ""ff

We will talk
when projeci

3cn
Er
M
i —

m
O

3n that are
t is a softw

&1
r -

f f

TO p"
^ J2j Crq

!£ TO
B cn■<S 3-6 B QCO C5 T3 P- n• cs to ,-r o

W £ T O M j a 3
f f Q . |

<-> cn - s»
. 3 O O ^

'-/i TO i ^ ^

. ^ n T i Q "
- O f f * o

^ . ? «

r2 TO ■-<,N w n .O
3 l""

• O P - M P
O < s S r r a

o o ?
Tl ff
i x f f c r

3 £• $ 3 ° 5*
r j - ^ - T O t o r x . > - f - L i L s - . t u 2

^ "■ ^ Q <* 3 ?,
I- cr ja s

- " " . B O < T 3 c n
C . t o r e < %
p . & r t . j a cn• alp 3 9 to

c » 3

- era p3 -

w » w O

I fig-0 < P p.
O O T O O Wff 3. p- a ff y*;
r ^ T O _ < U p - Sl-w 9 S.e.S-k •

■ M . C _.ro to
to g —' o -(•T 3 r< £■ c n 2

-. p- W D1 Y" X r - r^ cn 3 r* i - f r - fP - a : cn CO o 3 sL TO 3-§ >tn T O r - r

^< cr o o ro cn T 3 0 - 3 <̂ TO ft
ff 8 tflTO

r - rTO
f t H ?

f f m
CO Is-2 3

O
ff

stone
d up

<->
(y i >a ^ 3 S i £i s «>

§ -
o 'ff
CO

TO K' ff' f f 3 K3 3TO •—'• TO Ef 23 :z. - T O TO TO cn• f f ff !=t' S--<. TOfl cn
i-1TO— 3- cn

'era' 5" 5' s 3TO era
i—t I — ' • ^ N 3 - _ p—, W TO

Q, TO B i° *> I P »
> o- a sr wcn 1—■ -f —t_ TO p^ • TOQ ■■ n :13

i n Qw » o

> T 3 2 > P.

^ ft era" N 5

. o P c n w
O s o p - f t j n. O f f f f ^ < ^

y5 W* Q n . ffTO —:• . - cn

< n T O X i .
7 ^ 3' 3 § &S. Dcra on ff ^
P * 3 f f - O n ^

P - 3 (U

„ J*>p »: ^&
TO vii ' PT TO cncn ^* Co cn p^-ff

R C ff- P <?

A runaway project is one which has failed significantly to
achieve its objectives and/or has exceeded its original
budget by at least 30 percent [KPMG 1995].

As you can see, the KPMG definition of runaway is far more inclu
sive than ours. That is, if a project is somewhat over cost targets, 30
percent or more, by the KPMG definition that would be a runaway
whereas by ours it would not (it would have to exceed by 100 percent
to meet ours). Using the KPMG definition, there would be a lot more
runaway projects than we would include. The reason we mention the
KPMG definition at all, given our difference with its quantitative rep
resentation, is that it comes from the only research studies we are
aware of on runaway projects. In 1989 and again in 1995, KPMG per
formed a survey of runaway projects to determine their frequency,
their causes, the remedies tried, and the effect of the runaway on the
enterprise where it happened. We will present those research findings
in subsequent sections of this chapter.

Why are we so fussy about the definition of runaway? The reason
is this: It is now 1998, and we are only 40 something years into the
history of the software field. At this primitive, early stage, the most
common problem in building software systems is not the construc
tion of them itself, but rather the estimation of the costs of that con
struction. Why is there such a problem of estimation? Because the
software field has not made a conscientious effort to develop histo
ries of past project costs. Because the construction of software is an
extremely complex task—some say it is the most complex task ever
undertaken by human beings.

Because of the lack of history and the amount of complexity, a bar
rier was produced that no amount of mathematical techniques and
no amount of savvy, individual expertise has been able to overcome.
It is all too common for a software project to fail to meet its cost and
schedule targets, because those targets themselves were simply (and
grossly!) wrong.

It is our belief that a runaway project is one that fails for a reason
more profound than poor estimation. That is why we have raised the
barrier beyond the KPMG 30 percent figure—we want to make sure
that those projects that we call runaways are so called because the

development effort itself got out of control, regardless of whether the
original estimates were close to the correct figures or not. Often, a
project can exceed bad cost targets by more than 30 percent without
being a troubled or failed project. It is our intent not to include such
projects under our runaway umbrella, even though the KPMG study
would.

REFERENCE

KPMG 1995, "Runaway Projects—Cause and Effects," Software
World (UK), Vol. 26, No. 3, Andy Cole of KPMG.

1.2 THE CRIES OF SOFTWARE CRISIS

It has been common over the last decade or so to see a mention of the
"software crisis" in computing literature and sometimes even in the
popular press. Although different writers seem to use the term to mean
different things, the most common definition of software crisis is this:

Software is always over budget, behind schedule, and
unreliable.

It is important to me, however, to say here at the outset of this dis
cussion that

I do not believe in the existence of a software crisis.

It is important that I take that position fairly early in this book, be
cause otherwise it would be easy to conclude that the author of a
book on software runaways felt that those runaways were symptoms
of, and examples from, the software crisis. And nothing could be fur
ther from the truth.

There are lots of runaways, of course. This book will tell those sto
ries. But it is my belief that the incidence of those runaways repre
sents a tiny percentage of all the software projects ever attempted.

It is interesting to note that there have been many estimates pro
vided by those who do believe in a software crisis as to the frequen
cy of such projects. But there is a fundamental problem with those
estimates, they differ all over the map! The most famous numbers,
derived from a Government Accounting Office study, were that up
wards of 98 percent of projects failed ("less than 2 percent of the
software contracted for was usable as delivered"). But there was a
serious problem with those numbers—the GAO study was of sev
eral projects that were in trouble—that's why the GAO studied
them—and thus it is not surprising (nor very informative!) that 98
percent of software projects that are in trouble eventually fail. (For
a refutation of the misuse of the GAO numbers, see [Blum 1991].)

Many authors and speakers have repeated that GAO finding,
without really appreciating that the study was about something dif
ferent from what they thought it was. But even those who have not
repeated that 98 percent number have come up with huge percent

ages of failed software projects—I have seen numbers such as 60
percent, and 48 percent, and 35 percent, in various places in the lit
erature. It is my personal belief that there is no more reason to be
lieve those numbers than to believe the GAO 98 percent number.
The fact of the matter is, no one has really sufficiently performed a
survey to tell us what percentage of software projects fail. In fact,
hardly anyone has come up with an adequate definition of failure,
which of course would be necessary before that survey could have
any meaning. Note the difficulty we have already encountered in this
book in defining "runaway," surely an easier term to define than "fail
ure" since a runaway is in a sense more spectacular.

I am particularly incensed about these cries of software crisis and
their fraudulent quantifications for two reasons:

1. There is an implication in the cries of crisis that software '
practitioners are the original Mr. Bumble, unable to program
their way out of a paper bag.

2. There is an implication also that software practice is, in general,
full of failure, and that few successes have been achieved.

My own belief is that those implications are terribly wrong. When
I look around, I see a world in which computers and their software
are dependable and indispensable. They make my plane reserva
tions, control my banking transactions, and send people into
space—with enormous dependability.

Why, then, are there so many crying crisis? Because they have
something to gain by doing so. Some vendors cry crisis in order to
sell products or services that they claim will offer a cure. Some re
searchers cry crisis in order to obtain funding for research projects
that they claim will also (eventually) offer a cure. Some academics
cry crisis in order to motivate the acceptance and reading of their
professional papers that suggest a cure. Hardly a disinterested collec
tion of people.

There is, in fact, a funny thing about the cries of crisis (if a prob
lem with such serious implications could ever be funny). Most of
those who cry crisis and are trying to sell or promote something are
offering a better technology for building software. But most of the
case studies of software failure find that poor management tech
nique, not poor technology, is the cause of the problems. Thus even

'' • °i ff 5-

P- » era era
S- 5 rn ff

b p ff

Br o era
n cT cn

■£3 n vrT) O C

P̂ TO i ■

» 3 ^ C T c o
° p- 2
<J <- r ,T O £ '

r^ 9 P- »
& to

p- 3 pT O . 5

£- n P wQ ff^ 2"

f t) - w n P o O c n p -
P - f f P r a P P ^ ^ r - r ^^ _ r o e r a . 3 Q , 3 ^ f f - ^' C H c n t = > C m r o

o cr o *- era
M l A ' * w
<-. -! ro O '

^ ^ ^ S < r o ? 3 |ThS ff ^ &-S 5 a
N cn TO o !ro (2.T3 T3 ff
s o < : t o o a
a n> O SS cn

• TO -
r ff SOff ff ff

TO P- TO

5 8 gt r-
ff^ P cn cn

• P ^
T O f o T O f f

p p. -*3 P P -

n* *P << ff

■ =T3 ff TO TO p
3 ^ 3 3' § p pW ro^'era • 5a R

p- y- jdro p f f

&" n g' § P
3 § ^3 cT

cn 'P TO
0 . 3

- a ro • ro as M

5- so cr «• Jg as
A , & > - v l T O v ^

3 3 2
ro ff£cr ff £ ff

P - isa era ut !
. • " T J f i
P- » n> ff

c / i c n f f c n s o S i - "■ P
< ! H P - l C T v < p o < ^

M f f f f p - ' "

« r ^ P f f f f

c r o
1 1 1m 3 - - n f f o
" ^ C i / H ^ 3

ff 2 p
p P r o

fc3 S -2 § 3 GV, S to 3 a.
• S* ro u' ro p- a era

S rS ip* o3 so era

cn -<
" C i O 5 5

, u g i j u
j T^era 2 ff P- P

ro p- ro ff,
£ ro uj ro<, so -a —'

to p era

n > o P - T O i p - c n s o t o

achieving those unreasonable targets was to work far harder and far
longer than normal. Unfortunately, as Yourdon points out in the
preface of his book, death march projects have become the norm,
not the exception.

So what's the difference between all these terms? Obviously, they
are all dancing around the same general subject. But there is a differ-

1. Crunch mode is used to describe a project that has an
extremely tight schedule. It speaks to the pressures being felt
by the project participants.

2. Death march is used to describe a project that has a nearly
impossible schedule. It speaks to the oppressive smell of
potential failure surrounding the project participants.

3. Runaway is used to describe a project nearing or after its
termination. It speaks to the failure of the project to stay within
its boundaries. Often it speaks about a project that has either
already failed (usually in a spectacular way), or is about to.

A typical project to which these terms might apply could progress
in the following way: The project looks from the outset to be crunch
mode because someone has promised project results that are too
much, too soon. As the project gets underway, project participants all
too soon find themselves on a death march, trying to achieve these
increasingly unachievable targets. When it becomes obvious that the
project probably cannot succeed and will fail in a major way, the
project becomes a runaway.

Not all projects that are death marches fail, of course (remember
that the death march is the normal way of running a project these
days, according to [Yourdon 1997]. Although some of those death
marches become runaways, others will become successes). But all of
them, successes or failures, will have functioned in crunch mode.

Most people, given their choice, would not want to participate in
a death march, would not want to find themselves in crunch mode,
and would never, ever, want to be on a runaway. But project manag
ers have found a way to entice people into participation. They use a
process called "signing up" (described in [Kidder 1981]), that dan

gles so many benefits in front of the prospective participant that
they simply can't say no.

Why do we have such terms and such projects? The fact that these
terms are needed by the computing field speaks of the intense pres
sure in our era put on project completion. Usually systems projects
are managed by schedule—that is, the responsible manager exam
ines project progress against a predetermined schedule of events,2
and all too often that schedule is unreasonably short, and those
events are thus late in occurring. Because we know so little about ac
curate schedule estimation, and because estimates are usually made
by the people who are least able to make accurate estimates (e.g.,
marketers and customers), it is simply the norm that schedule tar
gets, and thus cost targets, are unreasonably short. Thus project
achievement of them is at best problematic. This is, of course, not'a
problem unique to the systems and software field. Given the intense
competitive pressures of the last half of the 20th century, workers in
all fields find themselves under the gun to do more than they can in
too short a time. The problem for systems and software is worsened,
however, by the fact that the field is so young, and because we know
so little about it compared to other fields, we are really never quite
sure that an unreasonable schedule is, in fact, THAT unreasonable.

REFERENCES

Boddie 1987, Crunch Mode, Yourdon Press, 1987, John Boddie.

Kidder 1981, The Soul of a New Machine, Little-Brown, 1981, Tracy
Kidder.

Yourdon 1997, Death March, Prentice Hall, 1997, Ed Yourdon.

1. Software personnel are motivated by things such as challenging projects and/
or a chance to use new technology rather than the more traditional ones of
power or money.

2. The schedule is often made up of "milestones." If these milestones are
extremely detailed, they are sometimes called "inch-pebbles."

1.4 SOME RELEVANT RESEARCH FINDINGS

Research in the computing field is all too often focused on theory to
the exclusion of practice. That is, computing researchers are very in
terested in developing new algorithms, new data representations, or
new formal methods, but very seldom are they interested in the for
malization of best practices or the learning experiences that can be
derived from worst practices.

That is an important failure of the computing research field. It is
well known in other fields that practice sometimes leads (is more ad
vanced than) theory; I will not belabor the point here (it is belabored
elsewhere, such as in [Glass 1989] and [Glass 1990]!), except to
point out that the invention of the steam engine preceded the devel
opment of the theory of thermodynamics, and the invention of the
airplane preceded the development of the theory of aerodynamics.
In a newly-emerging field—and what field in our time is more "new
ly-emerging" than software?—there is a great deal that theory can
learn by studying practice (some theorists even say that "theory is
the formalization of practice"), and computing theorists are not tak
ing advantage of that possibility.

All of that is prelude to this good news and bad news:

1. The bad news is that there are few research studies of runaway
projects. There are case studies of individual runaways (that is
what this book is primarily about), usually appearing in the
popular computing press rather than the theoretic literature,
but there has been little organized research attempting to
study runaways in more breadth in order to grapple with the
lessons that might be learned from doing so.

2. The good news is that there is one such recent study, and it is
an excellent one. It is published in what to most of us
jingoistic Americans is an obscure journal, but nevertheless it
is a superb study of the trends in, reasons for, remedies
attempted, and aftermath of software runaway projects
[KPMG 1995].

In fact, that research study is actually about two such studies. Not
only do we have the findings of the study published in 1995, but

that study also reflects on the findings of the same study performed
by the same organization in 1989. In other words, we not only can
learn some things about contemporary software runaway projects,
but we can learn some things about the trends in such projects.

In reporting on the findings of these studies, I would like to di
vide their discoveries into three categories. The first is predictable
findings. The software engineering literature contributes consider
able insight into what to do, and what not to do, during a software
project. The predictable findings reflect what we already know
from that literature. (It is important, of course, for research to
study those predictions in order to determine what can be support
ed by empirical findings and what cannot. Those that cannot
should be quickly relegated to the category of "old wives' (or hus
bands') tales," and not passed on through the literature any more.

The second category I would call surprising findings. There are
usually fewer surprising findings than predictable ones, but in a
sense surprising findings are more important than predictable ones,
since they provide us with new insight into our field. And, in the
case of the KPMG study, there are actually more surprising findings
than predictable ones.

The third category I will call trends. Because the study was con
ducted in both 1989 and 1995, the author of [KPMG 1995] had a
unique opportunity to present us with observations that take into
account the lapse of six years between the studies.

The predictable findings are:
1. Many of the runaway projects are (or were) "overly

ambitious." It is well known in the field that large projects are
problematic.

2. Most of the projects failed from a multiplicity of causes. There
may or may not have been a dominant cause, but there were
several problems contributing to many of the runaways.

3. Management problems were more frequently a dominant
cause than technical problems. But see the list of surprising
findings below.

4. Schedule overruns were more common (89 percent) than cost
overruns.(62 percent).

The surprising findings are:

1. Survey respondents thought that there would be more
runaways in the government and financial sectors, and fewer
in service and manufacturing. But the survey findings found
all such sectors equally susceptible.

2. Respondents were optimistic about the trend in runaways; 42
percent believed they would decrease in number, while only 8
percent felt they would increase.

3. The use of packaged software did not help in reducing the
incidence of runaways. Of the runaway projects studied, 47
percent consisted of mixed custom and packaged software; 24
percent were custom software; and 22 percent were packaged
software.

4. Runaway projects showed their true colors early in the project
history. More than half started showing symptoms during
system development, and 25 percent showed those symptoms
during initial planning.

5. In spite of the above, visibility into the existence of a runaway
came first of all from the project team (72 percent); only 19
percent were spotted initially at the senior management level.

6. Technology is dramatically increasing as a cause of runaways.
"Technology new to the organization" was the fourth most
common problem in the runaway projects. See this topic
discussed also under trends, below.

7. Risk management appears more and more frequently in the
software management literature. But 55 percent of the
runaway projects had not performed any risk management,
and of those 38 percent who did (some respondees did not
know whether it was used or not), half of them did not use the
risk findings once the project was underway.

The trends are:

1. Companies were much more reluctant to discuss runaway
projects in 1995 than they were in 1989. The number of
respondees in the newer study was half that of the earlier one,

in spite of the fact that the survey population (about 250
major organizations) was roughly the same.

2. Technology is a rapidly increasing cause of runaway projects.
Whereas in 1989 only 7 percent reported it as a cause, in 1995
the figure was 45 percent. (Interestingly, only 16 percent of
respondents felt the technology was "wrong" for the job.)
[KPMG 1995] concludes "Technology is developing faster
than the skills of the developers." (This conclusion will be
questioned in what follows.)

It is important to say several things about this study as we consid
er these predictable and surprising findings and trends:

1. The definition of runaway used in this study is different from
that used in this book (this was discussed earlier in Section
1.1). Far more projects would be considered runaways by the
definition used in the KPMG study ("a project that has failed
significantly to achieve its objectives and/or has exceeded its
original budget by at least 30 percent") than by the more
restrictive definition we use ("a project that goes out of control
primarily because of the difficulty of building the software
needed by the system," where "out of control" is taken to mean
"schedule, cost, or functionality that was twice as bad as that
sought").

2. The survey was conducted only in the UK (there were 250
major enterprises contacted). In this book, on the other hand,
most of the projects discussed are American. We are not
saying that we know of any differences in runaway projects
caused by country of origin; we are only saving that we would
prefer to put that fact on the table in case it is discovered to be
important by later studies.

3. The surprising trend in technology as a problem may be the
single most important finding of the survey. As noted above,
the KPMG study concludes that the problem usually lay not
with the technology, but rather with the ability of the software
practitioners to utilize it. Our analysis of the runaways in this
book suggests a different conclusion. Although our sample is

considerably smaller than that of the KPMG study, it is clear
from the projects we examined that (a) new technology was
also a frequent cause of problems, and (b) the reason was that
the technology was used prematurely or inappropriately. For
example, one project used a 4GL that was clearly inappropriate
for the large project on which it was attempted (performance
was inadequate for the large number of users projected), and
another made a point of using several different advanced
technologies (formal methods, expert systems, etc.) and failed
because those technologies were not yet ready for the kind of
large project use on which they were attempted. Our
conclusion is that it is often the technologies themselves
(particularly either their inability to scale up or the lack of a
track record of scaling them up) rather than the technologists,
who are primarily at fault when technology fails and a runaway

There are two other conclusions that might be drawn from our
own runaway reports in this book that are not found in the KPMG
study. They are:

1. Early on, those responsible for our runaway projects often
bragged about the "breakthrough" nature of the project, either
in terms of its business relevance or its technical (computing)
advances. There seemed to be little or no understanding by
those making such claims of the perilous course they were
undertaking. (In fact, for one of our runaways, a report
appeared in the computing literature bragging about the
project after it was known to have become a runaway!) In
some ways this contradicts one of the conclusions drawn in
the KPMG study: that many runaways are "misconceived to
start with." Or perhaps it is not a contradiction—the projects
were, in fact, misconceived; it was just that certain key players
didn't know it yet! (This, in fact, matches the KPMG finding
that runaway projects were spotted more often at the team
level than the management level.)

2. Of all the technology problems noted earlier, the most
dominant one in our own findings in this book is that

performance is a frequent cause of failure. (This was not noted
at all in the KPMG study.) A fairly large number of our
runaway projects were real-time in nature, and it was not
uncommon to find that the project could not achieve the
response times and/or functional performance times
demanded by the original requirements. This is an important
finding; it has become popular now to say that with the rise in
speed of marketplace computers, there is no longer a need for
software people to take responsibility for product
performance. This saying is manifested in several ways, the
most important of which is that there is little in computer
science or information systems education having to do with
improving software performance, or providing for it in the
first place. Since poor performance may be difficult to
overcome once it has been built into a project (by using an
interpretive 4GL or 3GL, for example, instead of a 3GL with
an optimizing compiler), this lack could be contributing to
the incidence of runaways.

3. There was one other problem in our runaways that was not
mentioned in the KPMG study. A significant number of the
runaway projects were in an application domain that might be
called "movement of goods." As you will see in the stories of
Chapter 2, there were two warehousing applications and one
baggage handling application among our collection. The
KPMG study, by contrast, felt that there was no one business
sector that was more likely to have runaways. (It may be that
the difference here is one of semantics; KPMG was talking
about what might be called "industries," and we are discussing
something below that level that we would call "domains." It
may well be that there is no difference in likelihood across
sectors (industries), but there is across domains.) It will be
interesting to watch for this difference in future such studies
(we hope there will be lots of them!).

There is one more, perhaps the most important, idea to utilize
from the KPMG study. One of the primary findings of the study was
that of identifying the "six top problems" that arose during runaway

« 3 ^ Q
rT1 SO§- s 2 c n< c n-t: o =5 •—'

cn era d

" n 3 s o o

O c n " > - r j
e f f * r - > n

PT .ro P ff
e r a _ _ (T)

__i rr> p ff" to o,r,'P ^ P C P i ? r 7o -i ff o F5- cr 2
?r ff* < •-■•

TO £>

c n P f c n
r-r 2 roff" 2

>h Tp- n*•< f t j

n cn
o ro f f - ^

S ^ ^
^* f f * N

cn cr o a
o t o 3 a

r-t ro era
F t - p c n e r a r -ro ff* £

s o o n - - > 3 . < ' c r - - '- i n) E o O T O < > < i r -^ P - f f f f ^ r o O r o
p. to K, B •

^ p i p - ^ p—* so cn to 3 rTCK> 5:
p -

•"• SO o» r, aTO o TO g-S §If)TO — - i f_f -3 & g
£ ff- I 55 <&3 TO -2 r5 -s:

3 f f ' T 3 c n c n C i s off p « TO <-- ff -(r 3 " f f '

▶ SXCrq

ro a cr <-,' (-s r-r soP- 8 ro g 2 K < H 5 ~ > nP-"< ff

- r m Q O n
T O P f f T S .

. O n .
« r o _■ "■■ " m oJ °-3 8 3 3

3" n CT !•('> ro ^ b o p. p
ff o era

a- e; ^ a v^
£ W

© &

P 2
f f P - ^ r gcn r-! C v X

ff era pi c n i

c n t o - c n ■T O H

