
CS 643 – Operating Systems – LIU 1 of 6

Assignment 4 (System calls)
09 March 2011

due 23 March at noon
To retrieve the files, just do an svn update again, and the a4 folder should appear.

$ cd ~/cs643
$ svn update
At revision 183

Run GeekOS user programs

is version of GeekOS is much more sophisticated than the last one. It can read a
very simple file system, load programs from it, and execute them in user mode. e
programs are in the a4/src/user/ sub-folder. In this section, you will edit and run
user programs, and then investigate the limitations of user mode.

1. First, build the kernel and user programs. e first time, this may take quite a while,
because our kernel has grown significantly in size and complexity since the last assign-
ment. As it nears completion, it may ask for your adminuser password again, to mount
the cs643host folder from your host OS. Below is some of the expected output. When
it finishes, you should see the files fd.img and diskc.vdi in your cs643host folder.

$ cd ~/cs643/a4/build
$ make
[...]
sudo mount -t vboxsf -o uid=`id -u` host /mnt/host && touch /mnt/host/.exists
[sudo] password for adminuser:
cat geekos/fd_boot.bin geekos/setup.bin geekos/kernel.bin > fd.img
cp fd.img /mnt/host
[...]
file work.exe starts at block 235
putting the directory at sector 161
cat vdi-header diskc.img >diskc.vdi
cp diskc.vdi /mnt/host
rm libc/entry.o
$

2. Before starting GeekOS, we need to ask VirtualBox to use diskc.vdi as a virtual C
drive. From the VirtualBox file menu, select Virtual Media Manager. en select Add.
Navigate to your cs643host folder and select the diskc.vdi file. Click OK to dismiss
the media manager.

3. Now single-click geekos in the VirtualBoxmachine list, and then click the Settings tool-
bar button. Select Storage tab and find the icon to add a new hard disk. Click it, and

2 of 6 Prof. League – Spring 2011 – Assignment 4 (System calls)

then make sure the new hard disk is set to diskc.vdi. Dismiss the settings dialog.

4. Start the geekos virtual machine. You should see the kernel initialize itself (make sure
it says Mounted /c filesystem! – that’s your indication that the previous steps
worked), and then give you a shell prompt. Yes, this version of GeekOS has a very simple
command-line shell, running in user mode. It can start up other user mode programs

that we write.

5. Type hello at the prompt and hit enter. When you do this, the shell looks for a program
on the (virtual!) /c filesystem called hello.exe. is programwas created by our build
scripts from the source code in a4/src/user/hello.c.

6. Openhello.cnow in your editor. It includes twoheader files: conio.h andprocess.h.
ese are libraries that GeekOS provides so that user programs know how to make sys-
tem calls into the kernel. We’ll explore that more in the next part. e hello program
contains calls to Print() and GetPID(). Both of these ultimately make system calls
(soware interrupts) into the kernel to do the real work. Remember: user-mode pro-
cesses are not allowed to access the hardware and system memory directly.

#include <conio.h>
#include <process.h>
int main(int argc, char* argv[])
{

int my_pid = Get_PID();
Print("Hello, world!\n");
Print("My process ID is %d\n", my_pid);
return 0;

}

7. Change the program so that, instead of printing “Hello, world!” it prints a personal greet-
ing to you, such as “Hello, Chris!” Rebuild everything, run it in VirtualBox again, and
type hello at the prompt. You should see your personalized greeting.

8. Now, we’re going to be devious and try to access the systemhardware directly from a user
program. Remember in the first assignments, when we accessed video memory using
VIDMEM[i]? at was okay because it was part of the kernel. But let’s try to do that from
user mode, and see what happens…

9. Add the following two macros to hello.c (somewhere near the top, doesn’t really mat-
ter):

CS 643 – Operating Systems – LIU 3 of 6

#define VIDMEM_ADDR 0xb8000
#define VIDMEM ((uchar_t*) VIDMEM_ADDR)

10. en, inside main, just before the return, add the following code:

VIDMEM[0] = 'A';

11. is, of course, will attempt to write the character ‘A’ in the upper le corner of the
screen. But it bypasses the kernel and talks directly to the hardware! Rebuild and run
your hello program again. Does the ‘A’ show up? What happened, and why? Type up
a short explanation as a comment in hello.c, and commit this along with your other
changes to the code.

Add system calls

Now,we’re going to add twonew systemcalls toGeekOS.eywork similarly toGet_PID(),
which you saw already in hello.c. Remember that the machine has a timer that sends
an interrupt periodically; we call each interrupt a ‘tick’. On a normal PC, the interrupt
comes something like 100 times per second. (On a virtual machine, it could be slower.)
At any rate, all of our time-keeping will be in units of the number of ticks.

Each time the timer interrupt occurs, the handler increments a global tick counter
g_numTicks, so this is pretty much just like a wall clock that keeps track of how much
time passes. Also, the process control block (PCB) of each process keeps track of how
many ticks that process has spent running on the CPU. When the process has been on
the CPU consecutively for g_Quantum ticks (4 by default), then it is time to evict that
process and schedule another one.

We’re going to provide system calls so that processes can figure out how much time
they’ve spent on the CPU so far, and how much “wall clock” time has elapsed. Among
other things, this will allow processes to compute their own turn-around and wait times.
Here’s how we do it. (It’s probably a good idea to try to recompile aer each step, just
so you can tell whether you have introduced compiler errors. You will not be able to
execute anything until step 6 though.)

12. Open up a4/include/geekos/syscall.h in your editor, and look for the enumera-
tion of “System call numbers” (starts at about line 40). is is an enumeration of system
calls that exist so far in GeekOS. Youwill see the SYS_PRINTSTRING and SYS_GETPID
which are both used by our hello program.

/*
* System call numbers
*/

enum {
SYS_NULL, /* Null (no-op) system call */
SYS_EXIT, /* Exit system call */
SYS_PRINTSTRING, /* Print string system call */
SYS_GETKEY, /* Get key system call */

4 of 6 Prof. League – Spring 2011 – Assignment 4 (System calls)

SYS_SETATTR, /* Set screen attribute system call */
SYS_GETCURSOR, /* Get current cursor position */
SYS_PUTCURSOR, /* Put current cursor position */
SYS_SPAWN, /* Spawn process system call */

SYS_WAIT, /* Wait for child process to exit system call */
SYS_GETPID, /* Get pid (process id) system call */

};

13. e order matters here, so do not disrupt any of the existing entries. But at the end
of the enumeration (before the closing brace), add the following: SYS_GETCPUTIME,
SYS_GETCLOCKTIME.

14. Openupa4/src/geekos/syscall.c in the editor, and look for the functionSys_GetPID
(about line 191). is is the implementation of that system call on the kernel side. Dupli-
cate that entire functiondefinition twice to produceSys_GetCPUTime andSys_GetClockTime.
Now, changewhat those functions return: *Sys_GetCPUTime should returng_currentThread->accumTicks;
this is the number of ticks that the process has spent (so far) running on the CPU. *
Sys_GetClockTime should return g_numTicks; this is the global variable that counts
the total number of ticks since the kernel began running.

15. Near the end of syscall.c, there is a definition of a global array g_syscallTable. You
must add your two new functions to the end of it. e order of the ‘’SysBlah” functions
listed here must precisely match the order of the ‘’SYSBLAH” identifiers in the enumera-
tion in syscall.h.

16. Okay, we’re done with the kernel side of things. Now we switch to the user side, and set
things up so that user programs can access our new systemcalls. Openupa4/include/libc/process.h
in your editor. Look for the declaration of Get_PID, and adddeclarations forGet_CPU_Time
and Get_Clock_Time. (All of them have void parameters and return int.)

17. Open up a4/src/libc/process.c in your editor. e top part of the file has “System
call wrappers,” which are defined using a macro DEF_SYSCALL. Basically, this expands
to a bit of code that has the user-level function trigger the correct soware interrupt,
and it tells how to pass the parameters, if any. e first parameter is the name of the
function you declared in process.h. e second parameter is the identifier you defined
in the enumeration in syscall.h. e remaining parameters are the return type and
argument list. Use the DEF_SYSCALL statement for Get_PID as a template to define the
two new system calls Get_CPU_Time and Get_Clock_Time.

DEF_SYSCALL(Get_PID,SYS_GETPID,int,(void),,SYSCALL_REGS_0)

18. At this point, everything on the kernel end and user end should be set up to use these
two new system calls, so let’s try it. Open up hello.c again, and add these two lines
somewhere ‘’before” you try to write to VIDMEM:

Print("The current time is %d ticks\n", Get_Clock_Time());
Print("I've been on the CPU for %d ticks\n", Get_CPU_Time());

CS 643 – Operating Systems – LIU 5 of 6

19. Now recompile everything and run it in VirtualBox. When you run hello at the shell
prompt, it should report something like the following. Your numbers may be slightly
different. Each time you run hello, the current time should go up. e number of ticks
on the CPU will probably always be 0 or 1, because this program isn’t doing much and
doesn’t need the CPU for very long.

The current time is 64 ticks
I've been on the CPU for 0 ticks

Test workloads

Now we’re going to instrument a CPU-bound user program so that it keeps track of its
own turn-around time. en we’ll run several copies of the program simultaneously,
and investigate the effect of changing the quantum (preemption interval) on scheduling.

20. Run your kernel, and at the shell prompt type compute and press enter. You can try this
again with various numeric parameters, as shown. e compute program does some
fairly meaningless mathematical computations, and usually reports an answer of zero in
the end. What matters for us is not the answer, but rather how long it takes to compute
it: larger parameters take longer. You should notice this as you run it, but let’s try to

quantify it.

21. Open a4/src/user/compute.c in your editor. Near the beginning of the program,
declare a new integer variable, and initialize it using Get_Clock_Time(). is records
the “wall clock” time at which the process started running.

22. At the end of the program, print out the number of CPU ticks used (retrieved using
Get_CPU_Time) and the amount of time elapsed on the clock. (Computing elapsed time
involves subtraction of start time from completion time!) When you have this working,
it should look something like the following. Your numbers may be slightly different,
but you should noticed that the times increase as the parameter value gets larger. Also,
the elapsed time and CPU time should be about the same. is is because we’re so far

running only one process at a time.

23. Run your kernel, and at the shell prompt, type work. is is a program that itself runs
six copies of the compute program, with a mix of arguments. So you should see six sets
of results from compute before getting a shell prompt back. Make a note of the elapsed
time of each of the six processes, and compute the average. (You can ignore the CPU
times for now.)

6 of 6 Prof. League – Spring 2011 – Assignment 4 (System calls)

24. Openupa4/src/geekos/timer.c in your editor. Look for the definition of DEFAULT_MAX_TICKS,
at about line 38. It should be set to 4. Change it to 8, recompile the kernel, and run the
work program again. Recompute the average elapsed time for the six processes. Did it
improve, or get worse?

25. Repeat the last step, so that you have average elapsed times for quantum values 2, 4, 8,
16, and 32. Type up your results within the comment just above DEFAULT_MAX_TICKS
in timer.c. What is the pattern?

at’s it, commit all the changes you made to the code and comments!

	 Run GeekOS user programs
	 Add system calls
	 Test workloads

