
CS 643 – Operating Systems – LIU 1 of 4

Assignment 5 (Inter-process communication)
24 March 2011

due 6 April at noon
In this assignment, we implement four system calls for allowing integer variables to

be shared between processes:

int Open_Shared_Var(const char *name, int value);
int Read_Shared_Var(int var);
void Write_Shared_Var(int var, int value);
void Close_Shared_Var(int var);

Shared variables have globally unique names, so cooperating processes just need to know
the names of the variables they are sharing. e first time a process opens a shared
variable with a particular name, the kernel will set aside some space for it and return a
handle (an index into an array kept in kernel memory). Other processes that open the
variable with the same name will receive a handle to the same variable. Writes to the
variable by one process can be read by other processes.

e main system call implementation details have been done for you… you did
something similar in the last assignment. Now you just must implement these system
calls, ina5/src/geekos/syscall.c. Look for theSHARED VARIABLE IMPLEMENTATION
comment in that file.

Each shared variable is represented in the kernel by the following structure:

struct Shared_Var
{

bool free; /* is this var free, or in use? */
char* name; /* what is name of this var? */
int refs; /* how many processes reference it? */
int value; /* current value of var */

};

e kernel has a global array of some fixed number of these variables available for use
by processes:

#define MAX_SHARED_VARS 25
struct Shared_Var g_sharedVars[MAX_SHARED_VARS];

eshared variables are initialized by the functionInit_SharedVars, which does some-
thing like this for each variable:

g_sharedVars[i].free = true;
g_sharedVars[i].name = NULL;
g_sharedVars[i].refs = 0;
g_sharedVars[i].value = 0;

Your task is to implement the four system calls. Open is the hardest, followed by close,*
then *read and write. Below I have some detailed specifications for all of them.

2 of 4 Prof. League – Spring 2011 – Assignment 5 (Inter-process communication)

ere are two user-mode test programs you can use. Typing work at the shell prompt
will run the two counter processes, to 800 and 900. So ideally we’d like the counter to
reach 1700, but you will find that it comes well short of that, and varies on each run.
We’ll get into that later. e other test program is called hello, and it should always
produce the same output:

$ hello
vc == 8
vb == 10
va == 7

Also, you can use Print() to help you figure out what’s going inside the system calls.
Remember, it works just like printf in standard C, with percent codes like %d, %s, etc.

Open

/* Open (and possibly create) a named shared variable.
* Params:
* state->ebx: user pointer to string containing variable name
* state->ecx: length of variable name
* state->edx: initial value for variable (if it doesn't exist yet)
* Returns:
* the index of the shared variable
*/
static int Sys_OpenSharedVar(struct Interrupt_State* state)

One of the first things we need to do is copy the name string from user space to kernel
space. Fortunately, there is a provided function for this, which makes it relatively easy:

/* Copy name from user to kernel space */
char* name = Malloc(state->ecx + 1);
Copy_From_User(name, state->ebx, state->ecx);
name[state->ecx] = '\0';

Following that, there are two phases. First, we loop through all the shared variables in
the array, looking for a variable with a matching name. e kernel provides a strcmp
function to compare strings; it works just like in C:

strcmp(s1, s2) == 0

means they are the same. If you find an existing shared variable with the desired name,
just increment its refs field and return its index.

Otherwise, we need to create a variable with this name. Now we loop through the
array again, just looking for a free variable (check the free flag in g_sharedVars[i]).
Once you find a free variable, we have to initialize it. Set its free flag to false, initialize
its name, set refs to 1, and set its initial value from state->edx.

If you don’t find any free variable, then we’re in trouble. But we’re not supporting
proper error-handling at the moment, so just print an error message and return zero.

CS 643 – Operating Systems – LIU 3 of 4

Read

/* Read from a shared variable.
* Params:
* state->ebx: index of the shared variable
* Returns:
* the value of the shared variable
*/

static int Sys_ReadSharedVar(struct Interrupt_State* state)

is is easy, just return the value of the indicated variable in the global array. You proba-
bly should do some sanity checking to make sure that state->ebx is within the bounds
of the array, and that the indicated shared variable is not free. (It would be an error to
read from a shared variable aer it has been closed.)

Write

/* Write to a shared variable.
* Params:
* state->ebx: index of the shared variable
* state->ecx: its new value
* Returns:
* always returns zero.
*/

static int Sys_WriteSharedVar(struct Interrupt_State* state)

Almost as easy as reading the variable, but you set its new value from state->ecx and
always return zero. You should do the same sanity checking as for the read.

Close

/* Closes (and possibly deallocates) a shared variable.
* Params:
* state->ebx: index of the shared variable
* Returns:
* always returns zero.
*/

static int Sys_CloseSharedVar(struct Interrupt_State* state)

Again, do sanity checks to make sure that state->ebx is a valid index, and indicates a
variable that is not already freed. If everything is okay, then decrement the refs field. If
refs reaches zero, it means that we’re the last process to close this shared variable, so we
should deallocate it: Set free to true, set name to NULL and zero out the integer fields.
is allows the shared variable location to be reused the next time we open one.

4 of 4 Prof. League – Spring 2011 – Assignment 5 (Inter-process communication)

Finally

For full credit, you should be sure to Free() the name strings allocated with Malloc()
inSys_OpenSharedVar. But be careful! If the pointer gets copied into theg_sharedVars
array, then we cannot free it until that shared variable is deallocated. Leave this until the
end, because calling Free() in the wrong places can cause obscure and hard-to-trace
bugs.

at’s it! Make sure your kernel compiles, and test it with the work and hello pro-
grams. Commit your changes before the deadline.

	 Open
	 Read
	 Write
	 Close
	 Finally

