
CS150: Operating Systems · LIU 1 of 2

Lab: Interprocess communication
17 February 2005

This lab will help to illustrate inter-process communication,
and kernel support for pipes, or communication channels.
To complete this exercise, you will probably want to have a
few pages of scrap paper handy.
We will simulate the execution of several processes on a
very simple Central Processing Unit (CPU). The CPU has
four registers:

ACC the ‘accumulator’
PC the program counter
BAS the base register
LIM the limit register

The accumulator is used to hold temporary results during
computation. The program counter keeps track of which
instruction we are executing in a given program. Finally,
the base and limit registers are used for protected memory
management, as discussed in class.
Apart from the CPU, we will need to represent a small
chunk of memory. Draw the memory as an array M, with
each index marked, like this:

M[0]
M[1]
M[2]
M[3]
M[4]
M[5]
M[6]
M[7]
M[8]
M[9]

Finally, we will need a process control block (PCB) for
each process. This time, we are extending the PCB with
an array of I/O descriptors. These are pointers to kernel
resources that the process may use for communication. The
PCB now looks like this:

Process ID
ACC
PC
BAS
LIM
IO[0]
IO[1]
IO[2]

We will need to reserve some amount of memory for the
operating system itself, as bucers for the communication

©2005 Christopher League. Some rights reserved:
http://creativecommons.org/licenses/by-nc-sa/2.0/

channels. Each bucer will have just two memory locations.
Ader writing two pieces of data to the bucer, it becomes
full.
The I/O descriptors of each process, then, point to the
memory locations of these bucers in the OS memory. When
a process wants to send data to the bucer, it specifies the
I/O channel in the system call. The OS will then copy the
value into the bucer. If the bucer is already full, then the pro-
cess will have to wait until space becomes available. There-
fore, each channel has a wait queue for the PCBs of processes
that are waiting for space to open up in the bucer.
A similar thing happens when a process tries to read from
a communication channel. If the bucer is empty, there is
nothing to read. So the process will have to wait until some
data become available in the bucer. When processes must
wait to both send and receive, it is called blocking I/O.
Below are reminders of how the non-communication parts
work, from the last lab. On the reverse side, there are four
programs we will simulate.

Dispatch

1. Select the process at the front of the ready queue.

2. Copy the contents of its PCB into the corresponding
CPU registers.

3. Let it run! You will know which instruction to execute
next by looking at the value of the PC. �

Timer interrupt

When the timer interrupt occurs, do the following:

1. Finish whatever instruction you are currently executing.

2. Copy the values of all 4 registers into the PCB of the
current process.

3. Move the PCB to the end of the ready queue.

4. Do the Dispatch procedure, above. �

2 of 2 Spring ’05 · Lab: Interprocess communication

Here are the four programs. A program that only sends
data, but does not receive is called a producer. A program
that receives but doesn’t send is called a consumer. A pro-
gram that receives and sends is called a filter.
In all of these programs, IO[1] will be used as an output
channel, and IO[0] as input. But remember, each process
has its own I/O descriptors, so the output channel of P1 can
easily be hooked to the input channel of P2. And voilà, they
can communicate!

Program: rolldice (a producer)

This program simulates rolling a 6-sided die n times. IO[1]
is initialized with the address of the output mailbox, and
M[0] is initialized with n.

1. if M[0] = 0 then PC← 6
2. M[0] ← M[0] - 1
3. ACC ← random(1,6)
4. send(IO[1], ACC)
5. PC← 1
6. send(IO[1], -1)
7. exit()

Program: sum (a consumer)

This program adds all the values received from the mailbox
IO[0] and leaves the sum in M[0].

1. M[0] ← 0
2. ACC ← receive(IO[0])
3. if ACC = -1 then PC← 6
4. M[0] ← M[0] + ACC
5. PC← 2
6. exit()

Program: odd (a filter)

A filter is both a producer and a consumer – it transforms in-
put data to output. This program reads values from mailbox
IO[0] and writes just the odd values to mailbox IO[1].

1. ACC ← receive(IO[0])
2. if ACC is even then PC← 1
3. send(IO[1], ACC)
2. if ACC != -1 then PC← 1
4. exit()

Program: howmany (a consumer)

This program adds all the values received from the mailbox
IO[0] and leaves the sum in M[0].

1. M[0] ← 0
2. ACC ← receive(IO[0])
3. if ACC = -1 then PC← 6
4. M[0] ← M[0] + 1
5. PC← 2
6. exit()

System calls

• random(i,j) returns a random number between i and j,
inclusive.

• send(box, val) enqueues the value into the mailbox. If
the mailbox is full, it blocks until there is space. (The
process must transition to a wait queue for that mail-
box.) As soon as the value is sent, if another process
was waiting to receive, it receives the value right away
and transitions to ready state.

• receive(box) dequeues and returns a value from the
mailbox. If the mailbox is empty, it blocks until there
is a value available. As soon as the value is received, if
another process is waiting to send, it now has the op-
portunity to send its value and move back to the ready
state.

Experiments

Try this process combination: (rolldice 10 | sum). The
pipe character (|) means you set up a fixed-size mailbox
in kernel memory and initialize IO[1] of the led pro-
cess and IO[0] of the right process to point to it. Af-
ter you are confident with how it works, try this one:
(rolldice 12 | odd | howmany).

