
cs 150 · Operating Systems · liu 1 of 3

Lab: Process scheduling
2 February 2006

This lab will help to illustrate process states,

queues, and the process control block—all con-

cepts from chapter 4. To complete this exercise,

you will probably want to have a few pages of scrap

paper handy.

We will simulate the execution of several pro-

cesses on a very simple Central Processing Unit

(CPU). The CPU has four registers:

ACC the ‘accumulator’

PC the program counter

BAS the base register

LIM the limit register

The accumulator is used to hold temporary re-

sults during computation. The program counter

keeps track of which instruction we are executing

in a given program. Finally, the base and limit reg-

isters are used for protected memory management,

as discussed in class.

Apart from the CPU, we will need to represent

a small chunk of memory. Draw the memory as

an array M, with each index marked, like this:

M[0]

M[1]

M[2]

M[3]

M[4]

M[5]

M[6]

M[7]

M[8]

M[9]

Now I’m going to give you a small program to

simulate on the CPU. Start by initializing M[5] to

3 (write the number 3 into the slot labeled M[5]

above.) Next, draw a picture of the CPU and its

four registers. Initialize PC to 1, BAS to 3, and LIM

to 6. The accumulator ACC may remain empty.

We have initialized the CPU so that the memory

owned by the current process ranges from location

3 to location 5. (Memory addresses will be ocset

by the base, and must remain less than the limit.)

Now, we will trace through the following program.

1. ACC← M[2]

2. if ACC = 0 then PC← 5

3. ACC← ACC - 1

4. PC← 2

5. M[2]← ACC

6. exit

We begin by looking at the contents of the pro-

gram counter, PC. It contains 1, right? So we will

execute instruction number 1. But first, increment

PC so it is already pointing to the next step. The

PC should now be 2.

Now we execute instruction 1, which copies the

value from memory location 2 into the accumu-

lator register of the CPU. But what do we mean

by memory location 2? We must take the memory

protection mechanism into account! When you see

M[2] in a program, add the contents of the BAS

register, and check that the result is less than the

contents of the LIM register.

In this case, we start with M[2]. BAS contains

3, and 2+3 is 5. Is 5 less than 6 (the limit)? Yes.

Now we are ready to do the copy, but we will

copy from M[5] (the ocset memory location) into

the accumulator. Your accumulator should now

contain the value 3. Important: whenever you see

M[i ] in a program, don’t forget to add the base

before accessing the memory.

Okay, now you are finished executing instruc-

tion 1. What next? To determine what to do next,

just look at the PC. It contains 2, so we should do

instruction number 2 next. But first, increment PC

so it is already pointing to the next step. The PC

should now be 3.

Now we execute instruction 2, which tests



2 of 3 Prof. League · Spring 2006 · Lab: Process scheduling

whether the accumulator is zero. The accumulator

contains 3, so the condition is false. That means

we just ignore the part ader then. We are now

finished executing instruction 2.

What next? To determine what to do next, just

look at the PC. It contains 3, so we should do

instruction number 3 next. But first, increment

the PC so it is already pointing to the next step.

The PC should now be 4.

Now we execute instruction 3, which decre-

ments the accumulator. Subtract one from the

value in the accumulator, and store the result back

into the accumulator. In other words, the value 3

in the accumulator now becumes 2. We are fin-

ished executing instruction 3.

What next? To determine what to do next, just

look at the PC. (Is this getting repetitive yet?) The

PC contains 4, so we should do instruction number

4 next. But first, increment the PC so it is already

pointing to the next step. The PC should now be

5.

Now we execute instruction 4, which changes

the PC! Assigning a new value to the program

counter is essentialy a go to statement, because

it forces us to jump to a dicerent instruction than

we would otherwise. Go ahead and overwrite the

value in the PC with the number 2. We are now

finished executing instruction 4.

What next? To determine what to do next, just

look at the PC. A-ha! The PC contains 2, so we

should do instruction number 2 next. But first,

increment the PC so it is already pointing to the

next step. The PC should now be 3.

Exercise 1. Go ahead and execute instruction 2,

and then continue until you reach an instruction

which tells you to exit this process. Once you

hit the exit, what is the value in the accumula-

tor? What is the value in M[5] (which this process

called M[2])?

Exercise 2. What did this simple program do?

How many times did it iterate through the loop?

Program: factorial

This program computes the factorial of its pa-

rameter. The parameter is whatever value is ini-

tially in M[0]. Recall that the factorial of 4 is

4×3×2×1=24. When the program exits, the result

will be in M[1].

1. M[1]← 1

2. ACC← M[0]

3. if ACC = 1 then PC← 9

4. ACC← ACC * M[1]

5. M[1]← ACC

6. ACC← M[0] - 1

7. M[0]← ACC

8. PC← 3

9. exit

Exercise 3. Reset the CPU, initializing PC to 1, BAS

to 7, and LIM to 9. That is, M[0] in this program

will map to M[7], and M[1] will become M[8] (by

adding the base). Initialize M[7] to 3 and simulate

execution of the program. You should end up with

3 factorial (= 6) in M[8] when you are finished.

Program: Fibonacci numbers

This program computes a sequence of integers

called the Fibonacci numbers. The first two Fi-

bonacci numbers are both 1. Ader that, the next

number is always the sum of the previous two. So

2 (= 1 + 1) is the third Fibonacci number. The

fourth is 3 (= 1 + 2). The fidh is 5 (= 2 + 3). Here

is more of the sequence:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 ...

This will compute the n
th Fibonacci number,

where n is the value in M[0] at the start of the

program. When the program exits, the answer will

be in M[2].



cs 150 · Operating Systems · liu 3 of 3

1. M[1]← 1

2. M[2]← 1

3. if M[0] < 3 then PC← 13

4. ACC← M[0]

5. M[0]← ACC - 2

6. ACC← M[1] + M[2]

7. M[1]← M[2]

8. M[2]← ACC

9. ACC← M[0] - 1

10. if ACC = 0 then PC← 13

11. M[0]← ACC

12. PC← 6

13. exit

Exercise 4. Once again, reset the CPU. Initialize

PC to 1, BAS to 1, and LIM to 4. Initialize the ab-

solute address M[1] (known as M[0] to this pro-

cess) with the value 6. Simulate the execution of

the program. You should end up with the 6th Fi-

bonacci number (= 8) in M[3] (known as M[2] to

this process) when you are finished.

Scheduling

Now that you are familiar with how to simulate

a CPU (and, more specifically, with the two pro-

grams on this page), we will attempt to run both of

them simultaneously on one CPU. The “operating

system” (in other words, you) will switch between

the two dicerent tasks whenever the timer inter-

rupt occurs.

To keep track of what is going on, each process

will need its own process control block (PCB). It

looks like this:

Process ID

ACC

PC

BAS

LIM

Initialize both PCBs by setting the process IDs to 1

and 2 (respectively), the PCs to 1, and the base and

limit to some non-overlapping regions of memory.

Each task should have at least 3 slots of memory

to call its own.

Next, you need to provide the initial pareme-

ters for both tasks. Initialize M[0] of the factorial

process with the number 5, and set M[0] of the

Fibonacci process to 8.

Once the PCBs are initialized, both of them go

into the ready queue, and we do a dispatch:

Dispatch

1. Select the process at the front of the ready

queue.

2. Copy the contents of its PCB into the corre-

sponding CPU registers.

3. Let it run! You will know which instruction

to execute next by looking at the value of the

PC.

Timer interrupt

When the timer interrupt occurs, do the following:

1. Finish whatever instruction you are currently

executing.

2. Copy the values of all 4 registers into the PCB

of the current process.

3. Move the PCB to the end of the ready queue.

4. Do the Dispatch procedure, above.


