
CS664 – Compiler Theory and Design – LIU 1 of 2

Assignment 1
Thu Jan 28 (125 points)

Prerequisite

First, set up your Git account Java development environment by following the in-
structions on the software setup page.

Task

Suppose we want to compile a language with a comment syntax similar to C/C++. A
comment begins with the two characters (* and ends with the characters *). Those
matching sequences and any characters between them should be ignored. Com-
ments can contain newlines. They may not be nested. A program that ends with
an unterminated comment is an error.

You should create a new Java project called assn1 in a fresh sub-directory of your Git
repository. Within the project, create a class CommentLexer with a method strip-

Comments defined like this:

public static String stripComments(String source) {

// TODO...

}

The objective of stripComments is to remove the comments (as described above)
from the source string, and return a new string containing only the non-comment
portions of the source string. For example, stripComments("Hello(*cruel*)World")
should return "HelloWorld".

You may want to think about the procedure in terms of a finite state automaton.
What are the possible states and transitions? Are there any actions you need to take
on certain transitions?

To submit your program, make sure the files in your assn1 directory are added to
Git VCS, then commit and push. Some helpful hints follow.

Tips

• I have set up a sample project at https://git.liucs.net/cs664s16/cs664pub/
tree/master/assn1 (look in the src sub-directory). In addition to a template for
the CommentLexer class, I provide a substantial test suite in CommentLexerTest

and a class you can use as an exception to throw in the case of an unterminated

setup.html
https://git.liucs.net/cs664s16/cs664pub/tree/master/assn1
https://git.liucs.net/cs664s16/cs664pub/tree/master/assn1


2 of 2 Prof. League – Spring 2016 – Assignment 1

comment. To try it out, you can clone the entire cs664pub project into your system
(just like you did for your own project in the software setup) – just don’t do it
within your own Git repository, save it somewhere else. The repository URL is
git@git.liucs.net:cs664s16/cs664pub.git

• The test suite uses jUnit 4. It’s very easy to add this library to an IntelliJ project.
Go to File » Project Structure and select Libraries from the left panel. Then hit
the green plus sign in the next column and select From Maven. In the search box,
type junit:junit:4.12 and hit the search icon. Once it finds it, you can press OK.
Confirm that you want to incorporate the library into your assn1 module.

• To run the test suite, select Run » Run… and it should automatically show Com-

mentLexerTest as an option. Once it’s configured, you can just useRun »RunCom-
mentLexerTest or the green Play button.

• The best way to build up a string incrementally in Java is to use StringBuilder. So
here is an example of an implementation that keeps only the odd-numbered charac-
ters in the source string. So “banana” would become “aaa”. It won’t pass the tests,
but it does show the correct usage of StringBuilder.

public static String stripComments(String source) {

StringBuilder buffer = new StringBuilder();

for(int i = 0; i < source.length(); i++) {

char current = source.charAt(i);

if(i % 2 == 1) { // odd-numbered characters

buffer.append(current);

}

}

return buffer.toString(); // convert builder to regular string

}

If you try to use this implementation in the test suite, the failures will show you what
it does:

org.junit.ComparisonFailure:

Expected :This (has balanced) parens

Actual :hs(a aacd aes

• The example from the language theory notes on how to implement an FSA in Java
might also be helpful.

lang-theory.html#implementing-fsas

	Prerequisite
	Task
	Tips

