
CS664 – Compiler Theory and Design – LIU 1 of 3

Assignment 2
Fri Feb 5 (125 points)

For this assignment, you will code a lexical analyzer for the PicoScript language. You
can use my lexdemo project as an example. I have also provided a template project
for you to use in the assn2 project — it defines the Token class (which you shouldn’t
need to change), LexError for reporting lexical errors, a LexerTest which is full of
test cases, and the skeleton of the Lexer class.

(If you already cloned the cs664pub repository, you can use VCS » Update Project
or git pull from the command line to download the latest changes.)

Like the list language in lexdemo, PicoScript is LL(1). This means we need only one
character of look-ahead to decide which token to produce. The pieces in Lexer that
are missing are marked with // TODO comments. The bulk of it is in nextToken, but
you can also add code to consume to update the line and column counters. For most
tests, we don’t care about tracking the positions of tokens, but there are a few tests
that verify positions explicitly. You are welcome to add additional methods, similar
to how we used scanInteger in the lexdemo lexer.

In both lexdemo and the assn2 template, there is a mainmethod in the lexer class that
accepts strings on the standard input. Here is a sample run of my solution, where I
typed only the line that begins with /square – the rest is output by the program.

Patiently awaiting your code (^D or ^Z to end)

/square{dup mul}def

SYM(square)@1:1

LBRACE@1:8

OP(dup)@1:9

OP(mul)@1:13

RBRACE@1:16

OP(def)@1:17

EOF

To submit your program, make sure the files in your assn2 directory are added to
Git VCS, then commit and push.

Tips

You can just copy the entire assn2 directory from the project template into your own
Git working directory, and use it as a starting point. Either run the Lexer class to try
it interactively, or run LexerTest to apply all the test cases.

To understand a little more concretely what it has to do, let’s break down the
demonstration block shown above. The PicoScript program /square{dup mul}def

picoscript.html
https://git.liucs.net/cs664s16/cs664pub/tree/master/lexdemo
https://git.liucs.net/cs664s16/cs664pub/tree/master/assn2
https://git.liucs.net/cs664s16/cs664pub/tree/master/lexdemo
https://git.liucs.net/cs664s16/cs664pub/tree/master/lexdemo
https://git.liucs.net/cs664s16/cs664pub/tree/master/assn2
https://git.liucs.net/cs664s16/cs664pub/tree/master/assn2


2 of 3 Prof. League – Spring 2016 – Assignment 2

is passed to new Lexer() as a StringReader, so we can read one character at a time
using reader.read(). (That part is already provided — see the Lexer.consume

method.)

Then, the main program calls Lexer.nextToken repeatedly. Each time, it returns
the next token in the program, which produces the list in the example above. So let’s
examine the first one. The first character in lookahead is the slash ‘/’ from the input
string. We know that the slash indicates the start of a symbol. So you consume and
buffer any remaining characters until you see something that cannot be part of an
identifier, like a space, parentheses, curly braces, or EOF. And then you can return

return new Token(Token.Type.SYM, buffer.toString());

as the first token. It’s exactly the same procedure as scanIdentifier in the lexdemo
project.

Now the next time nextToken is called, the lookahead character will be the left brace.
So you just

return new Token(Token.Type.LBRACE);

The third time nextToken is called, the lookahead character will be the letter ‘d’ from
dup. Any alphabetic character starts an operator. Consume and buffer remaining
characters until you see something that cannot be part of an identifier (sound famil-
iar? again, just like scanIdentifier in the lexdemo project). And the third token
will be

return new Token(Token.Type.OP, buffer.toString());

These three pieces I’ve stepped through correspond to the first three lines of output:

SYM(square)@1:1

LBRACE@1:8

OP(dup)@1:9

That output also shows the line and column numbers, but don’t worry about that
until all the different token types are working. So really at this point your output
would just not include the line and column numbers:

SYM(square)

LBRACE

OP(dup)

https://git.liucs.net/cs664s16/cs664pub/tree/master/lexdemo
https://git.liucs.net/cs664s16/cs664pub/tree/master/lexdemo


CS664 – Compiler Theory and Design – LIU 3 of 3

Now what is the lookahead character? Following the dup in my program is a space.
So when the lookahead is a space, you should consume it, ignore it, and check the
next character. Now the lookahead is ‘m’ which is alphabetic, so will be an operator
again.

Because PicoScript is LL(1), one character is enough to determine what token type
we’ll output:

• Slash indicates a symbol
• Alphabetic → operator
• Digit → integer
• Left brace
• Right brace
• Percent sign for comment (ignored)
• White space is ignored


	Tips

